
E. E. Holmes and E. J. Ward

Analysis of multivariate time-
series using the MARSS package

April 22, 2010

Mathematical Biology Program

Northwest Fisheries Science Center

Holmes, E. E. and E. J. Ward. 2009. Analysis of multivariate time-series
using the MARSS package. NOAA Fisheries, Northwest Fisheries Science
Center, 2725 Montlake Blvd E., Seattle, WA 98112, unpublished
documentation. Contact eli.holmes@noaa.gov

V

Preface

The motivation for our work with MARSS models was a collaboration with
Rich Hinrichsen (Hinrichsen and Holmes, 2009). Rich developed a framework
for analysis of multi-site population count data using MARSS models and
bootstrap AICb. Our work (EEH and EJW) extended Rich’s framework, made
it more general, and led to the development of a parametric bootstrap AICb
for MARSS models, which allows one to do model-selection using datasets
with missing values(Ward et al., 2009; Holmes and Ward, 2010). Later, we
developed additional algorithms for simulation and confidence intervals. Dis-
cussions with Mark Scheuerell led to an extensive revision of the EM algorithm
and to the development of a general EM algorithm for constrained MARSS
models(Holmes, 2010). Discussions with Mark also led to a complete rewrite
of the model specification so that the package could be used for MARSS in
general – rather than simply the form of MARSS model used in our (EEH and
EJW) applications. Many collaborators have helped testing the package; we
thank especially Yasmin Lucero, Mark Scheuerell, Kevin See, and Brice Sem-
mens. Development of the code into a R package would not have been possible
without Kellie Wills, who developed the package and wrote the majority of
the code outside of the algorithm functions.

The case studies used in this manual were developed for workshops on
analysis of multivariate time series data given at the Ecological Society meet-
ings since 2005 and taught by us (EEH and EJW) along with Yasmin Lucero,
Stephanie Hampton, Brice Semmens, and Mark Scheuerell. The case study on
extinction estimation and trend estimation was initially developed by Brice
Semmens and later extended by us for this manual. The algorithm behind the
TMU figure in case study 1 was developed during a collaboration with Steve
Ellner (Ellner and Holmes, 2008).

EEH and EJW are research scientists at the Northwest Fisheries Science
Center in the Mathematical Biology program. This work was conducted as
part of our jobs at the Northwest Fisheries Science Center, a research center for
NOAA Fisheries which is a US federal government agency. A CAMEO grant
from NOAA Fisheries supported Kellie Wills. During the initial stages of this
work, EJW was supported on a post-doctoral fellowship from the National
Research Council.

You are welcome to use the code and adapt it with attribution. It may not
be used in any commercial applications. Links to more code and publications
on MARSS applications can be found by following the links at EEH’s website
http://faculty.washington.edu/eeholmes Links to our papers that use these
methods can also be found at the same website.

Contents

1 The MARSS package . 1

2 The main MARSS functions . 3
2.1 Fitting a MARSS model to data . 3
2.2 Using a fitted marss object (class=marssMLE) 4

3 MARSS model specification in the core functions 5
3.1 Specifying the fixed and free components of the parameters . . . 6
3.2 Limits on the forms of the parameter constraints (version 1.0) . 7

4 The PopMARSS wrapper function . 9
4.1 PopMARSS, a wrapper for multivariate Gompertz models 9
4.2 Process equation constraints . 10
4.3 Observation equation constraints . 14

5 Algorithms used in the MARSS package 17
5.1 Kalman filter and smoother . 17
5.2 The likelihood . 18
5.3 Parameter estimation . 19
5.4 Parametric and innovations bootstrapping 20
5.5 Simulation and forecasting . 21
5.6 Model selection . 21

6 The MARSS case studies: instructions . 23
6.1 Set-up . 23
6.2 Tips . 24

7 Case Study 1: Count-based PVA for data with observation
error . 25
7.1 The Problem. 25
7.2 Simulated data with process and observation error 26
7.3 Parameter estimation . 28

VIII Contents

7.4 Probability of hitting a threshold Π(xd, te) 34
7.5 Certain and uncertain regions . 39
7.6 More risk metrics and some real data . 41
7.7 Confidence intervals . 43
7.8 Other parameter estimation methods . 44

8 Case study 2: Combining multi-site and subpopulation
data to estimate trends and trajectories 45
8.1 The problem . 45
8.2 Analyze assuming a single total Puget Sound population 47
8.3 Changing the assumption about the observation variances 52
8.4 Analyze the data assuming North and South subpopulations . . 55
8.5 Using PopMARSS to fit other population and observation error

structures . 59
8.6 Discussion . 61

9 Case Study 3: Using MARSS models to identify spatial
population structure and covariance . 65
9.1 The problem . 65
9.2 Analysis for question 1: how many distinct subpopulations? . . . 65
9.3 Analysis for question 2: Is Hood Canal separate? 69

10 Case Study 5: Using state-space models to analyze noisy
animal tracking data . 73
10.1 A simple random walk model of animal movement 73
10.2 The problem . 73
10.3 Using the Kalman-EM algorithm to estimate locations from

bad tag data . 75
10.4 Comparing turtle tracks to proposed fishing areas 78
10.5 Using fields to get density plots of locations 79
10.6 Using specialized packages to analyze tag data 79

A Package MARSS: Object structures . 81
A.1 Model objects: class ‘marssm’ . 81
A.2 Wrapper objects: class ‘popWrap’ . 82
A.3 ML estimation objects: class ‘marssMLE’ 83

B Package MARSS: Base functions and wrappers 85

References . 87

Index . 91

1

The MARSS package

The MARSS package is designed to fit constrained and unconstrained linear
MARSS models of the form

xt = Bxt−1 + u + wt, where Wt ∼ MVN(0,Q) (1.1a)
yt = Zxt + a + vt, where Vt ∼ MVN(0,R) (1.1b)

x1 ∼ MVN(π,V1) (1.1c)

The model includes random variables, parameters and data:

� xt is a m×1 column vector of the hidden states at time t. It is a realization
of the random variable Xt.

� wt is a m×1 column vector of the process errors at time t. It is a realization
of the random variable Wt.

� yt is a n× 1 column vector of the observed data at time t. Missing values
are allowed.

� vt is a n × 1 column vector of the non-process errors at time t. It is a
realization of the random variable Vt.

� B is a parameter and is a m×m matrix.
� u is a parameter and is a m× 1 column vector.
� Q is a parameter and is a m×m variance-covariance matrix.
� Z is a parameter and is a n×m matrix.
� a is a parameter and is a n× 1 column vector.
� R is a parameter and is a n× n variance-covariance matrix.

The meaning of the parameters depends on the application for which the
MARSS model is being used. In the case studies, we show examples of MARSS
used as population models. However, MARSS models are widely used in many
fields, engineering, finance, genetics, physics, etc., and our examples are just
one way that MARSS models are used. The MARSS package is not specific to
population modeling applications. It fits generic MARSS models of the form
in Equation (1.1).

2 1 The MARSS package

The MARSS package allows one to fit both unconstrained models and
models in which the parameters are constrained in the sense that they have
fixed, free and shared values. For example, let M and m be arbitrary matrix
and column vector parameters. The MARSS package allows one to easily
specify and fit models where M and m have the following forms.

M =

 a 0.9 c
−1.2 a 0

0 c b

 and m =

d
d
e

2.2

Version 1.0 of the MARSS package fits models via maximum-likelihood1

using an EM algorithm. It also supplies functions for various standard fre-
quentist computations: confidence intervals, bootstrapping, model selection
(via AIC and parametric and non-parametric bootstrap AIC), simulation, and
bootstrap bias correction. Version 1.0 does not allow B or Z to be estimated
and a is constrained to act as a scaling factor. Version 2.0 is currently being
tested and it will allow B, Z, and a estimation along with less constrained
forms of Q and R. Version 3.0 is in development and will provide Bayesian
estimation. The EM algorithm is used because it is robust to missing val-
ues and to models with various constraints, however quasi-Newton methods
might also work in cases where there are no missing values. The DLM pack-
age (search for it on CRAN) provides fitting via quasi-Newton methods; the
MARSS package provides a function for converting MARSS model objects to
DLM model objects.

1 Be aware ML estimates of variance in MARSS models are fundamentally biased.
This bias is more severe when one or the other of R or Q is very small and the
bias does not go to zero as sample goes to infinity. You can generate an unbiased
using a bootstrap estimate bias. The function MARSSparamCIs() will do this.
However be aware that adding an estimated bias to a parameter estimate will
lead to an increase in the variance of your parameter estimate. The amount of
variance added will depend on sample size.

2

The main MARSS functions

The MARSS 1.0 functions use maximum-likelihood to fit models to data.
They work with and produce two main types of objects: a marss model
which is class=marssm and a maximum-likelihood fitted model object which
is class=marssMLE. A marss model object specifies the structure of the model
to be fitted. It is an R code version of the model. Below“modleObj”means the
argument (or returned value is a marss model object, and “MLEobj” means
the argument (or returned value) is a marssMLE object.

2.1 Fitting a MARSS model to data

MLEobj=PopMARSS(data) This will fit a MARSS model to the data using a
default model where the number of state processes is equal to the number
of observation time series. The default has a diagonal observation error
matrix and unconstrainted process error matrix. MLEobj is a marssMLE
object where the estimated parameters are in MLEobj$par. Type sum-
mary(MLEobj) to see the model and summary of the fitted parameters.
The PopMARSS function takes care of error-checking and model struc-
ture. The rest of the fitting functions are core functions.

MLEobj=MARSSkf(data, modelObj) This will compute the expected values of
the hidden states given data and a MARSS model object via the Kalman
filter (to produce estimates conditioned on 1 : t − 1) and the Kalman
smoother (to produce estimates conditioned on 1 : T . The function also
returns the exact likelihood of the data conditioned on the model using
the innovations algorithm with missing value corrections (see Chapter 5).

MLEobj=MARSSkem(MLEobj) This will fit a MARSS model via the Kalman-
EM algorithm to the data using a properly specified marss MLE object;
this has data, the marss model and the necessary initial condition and
control elements. See the appendix on the object structures in the MARSS
package. MARSSkem does no error-checking. See is.marssMLE().

4 2 The main MARSS functions

MLEobj=MARSSmcinit(MLEobj) This will perform a Monte Carlo initial con-
ditions search and update the marss MLE object with the best initial
conditions from the search.

is.marssMLE(MLEobj) This will check that a marss mle object is properly
specified and ready for fitting. This should be called before MARSSkem is
called. This function is not typically needed if using PopMARSS since Pop-
MARSS builds the marss model object for the user and does error-checking
on model structure.

is.marssm(modelObj) This will check that the free and fixed matrices in a
marss model object are properly specified. This function is not typically
needed if using PopMARSS since PopMARSS builds the marss model object
for the user and does error-checking on model structure.

2.2 Using a fitted marss object (class=marssMLE)

The following functions use objects of class=marssMLE. Type ?function.name
to see information on usage and examples.

MLEobj=MARSSaic(MLEobj) This adds model selection criteria, AIC, AICc,
and AICb, to a marssMLE object.

boot=MARSSboot(MLEobj) This returns bootstrapped parameters and data
via parametric or innovations bootstrapping.

MLEobj=MARSShessian(MLEobj) This adds a numerically estimated Hessian
matrix to a marssMLE object.

MLEobj=MARSSparamCIs(MLEobj) This adds standard errors, confidence in-
tervals, and bootstrap estimated bias for the ML parameters using boot-
strapping or the Hessian to the passed in marssMLE object.

sims=MARSSsimulate(parList) This returns simulated data from a MARSS
model specified via the parameter matrices in parList (this is a list with
elements Q, R, U, etc). Typically one would pass in MLEobj$params as one’s
parameter list, but you can also construct the list manually.

paramVec=MARSSvectorizeparams(MLEobj) This returns the estimated (and
only the estimated) parameters as a vector. This is useful for storing the
results of simulations and for writing functions that fit MARSS models
using R’s optim function. The function can also be used to assign free
values to a MLE object. See ?MARSSvectorizeparams for other uses.

newMLEobj=MARSSvectorizeparams(MLEobj, paramVec) This returns a marssMLE
object in which the estimated parameters (which are in MLEobj$params
along with the fixed values) are replaced with the values in paramVec.
This is useful when you have bootstrapped parameter sets. You can
then create proper marssMLE objects from the bootstrapped parameters
using bootMLEobj=MARSSvectorizeparams(MLEobj, bootparamVec)and
simulate from those using MARSSsimulate.

3

MARSS model specification in the core
functions

Most users will not directly work with the core functions nor build marss
model objects from scratch. Instead, they will usually interact with the core
function via a wrapper function such as PopMARSS described in chapter 4.
However, a basic understanding of the structure of a marss model object is
necessary if one wants to fit more flexible models or to interact with the core
functions.

A MARSS model is fit to data by passing in data and a marss model
object (class=marssm) to one of the MARSS fitting functions. A marss model
object specifies the structure of the MARSS model (Equation 1.1) in R code.
In this chapter, we describe how the model is specified for the core functions,
but in most cases, it is better to access the core functions by using a wrapper
function. In many applications, the MARSS model will take a very specific
form, and the user only needs to change specific parameters or change specific
structures (like “unconstrained” versus ”diagonal”). A wrapper function builds
the basic model structure for the user and only changes the necessary elements
or structures. The core functions are designed to be very flexible so that one
can fit many different types of models, but that flexibility can be overwhelming
if the user only needs to fit a specific model structure. Chapter 4 describes
the wrapper function PopMARSS which is designed for analysis of population
data using a multivariate Gompertz model.

The first step of model specification is to write down the model in matrix
form (Equation 1.1) with notes on the dimensions (rows and columns) of
each parameter and for x and y. In the core functions, the parameters in the
MARSS model must be passed as matrices of the correct dimension. Thus
the parameters in the R functions correspond one-to-one to the mathematical
equation. For example, U must be passed in as a matrix of dimension c(m,1).
The function will return an error if anything else is passed in (including a
matrix with dim=c(1,m)).

6 3 MARSS model specification in the core functions

3.1 Specifying the fixed and free components of the
parameters

In a marss model object, each parameter must be specified by a pair of ma-
trices: free which gives the location and sharing of the estimated elements in
the parameter matrix and fixed which specifies the location and value of the
fixed element in the parameter matrix. For example, Q is specified by free$Q
and fixed$Q.

The fixed matrix specifies the values (numeric) of the fixed (meaning not
estimated) elements. In the fixed matrix, the free (meaning estimated or fitted)
elements are denoted with NA. The following shows some common examples
of the fixed matrix using fixed$Q as the example. Each of the other fixed
matrices for the other parameters uses the same pattern.

� Q is unconstrained, so there are no fixed values

fixed$Q =

NA NA NA
NA NA NA
NA NA NA

� Q is a diagonal matrix, so the off-diagonals are fixed at 0. The diagonal

elements will be estimated.

fixed$Q =

NA 0 0
0 NA 0
0 0 NA

� Q is fixed, i.e. will not be estimated rather all values in the Q matrix are

fixed.

fixed$Q =

0.1 0 0
0 0.1 0
0 0 0.1

The free matrix specifies which elements are estimated and specifies how

(and whether) the free elements are shared. In the free matrix, the fixed
elements are denoted NA. The following shows some common examples of free
using free$Q as the example. Note that free can be either a character matrix
or a numeric matrix.

� Q is a diagonal matrix in which there is only one shared value on the
diagonal. Thus there is only one Q parameter.

free$Q =

 1 NA NA
NA 1 NA
NA NA 1

 or

 ”a” NA NA
NA ”a” NA
NA NA ”a”

� Q is a diagonal matrix in which each of the diagonal elements are different.

free$Q =

 1 NA NA
NA 2 NA
NA NA 3

 or

”north” NA NA
NA ”middle” NA
NA NA ”south”

3.2 Limits on the forms of the parameter constraints (version 1.0) 7

� Q has one value on the diagonal and another one on the off-diagonals.
There are no fixed values in Q.

free$Q =

1 2 2
2 1 2
2 2 1

 or

”a” ”b” ”b”
”b” ”a” ”b”
”b” ”b” ”a”

� Q is unconstrained. There are no fixed values in Q in this case. Note that

since, Q is a variance-covariance matrix, it must be symmetric across the
diagonal.

free$Q =

1 2 3
2 4 5
3 5 6

B and Z do not have that limitation, thus their unconstrained versions
have all elements different:

free$B =

1 2 3
4 5 6
7 8 9

3.2 Limits on the forms of the parameter constraints
(version 1.0)

MARSS 1.0 will allow any combination of fixed and shared values in A and
U, but in R, Q, B, and Z there are limits to what forms these matrices can
take. These limitations have to do with the way the EM algorithm is coded
for version 1.0. Version 2.0 will remove many of these restrictions.

� R and Q can be fixed, unconstrained, diagonal with any pattern of shared
values on the diagonal, a matrix with one value on the diagonal and another
on the off-diagonals (an ”equal var-cov” matrix), and block-diagonal in
these patterns.

� If there are missing values in the data, R must be diagonal (or fixed).
� B can be fixed, unconstrained, diagonal, or block diagonal unconstrained.

If B is diagonal, there can be any pattern of shared values or fixed values
on the diagonal. However, if B is diagonal, Q must also be diagonal. This
last constraint is one-way; if Q is diagonal, it is not necessary that B be
diagonal.

� Z can be fixed, unconstrained, diagonal, or block diagonal unconstrained.
If Z is diagonal, there can be any pattern of shared values or fixed values
on the diagonal. However, if Z is diagonal, R must also be diagonal. This
last constraint is one-way; if R is diagonal, it is not necessary that Z be
diagonal.

8 3 MARSS model specification in the core functions

The other limitation is that one must specify a model that has only one
solution. The core MARSS functions will allow you to attempt to fit an im-
proper model (one with multiple solutions). If you do this accidentally, it may
or may not be obvious that you have a problem. The MARSS estimation func-
tions may chug along happily and return a solution. Careful thought about
your model structure and the structure of the estimated parameter matrices
will help you determine if your model is under-constrained and unsolvable.
Basically, take care when using MARSS core functions directly and remember
that it will not prevent you from fitting an under-constrained model. This is
not a problem when using PopMARSS – as long as you do not use its optional
fixed or free arguments. The PopMARSS wrapper builds the marss model
for the user and is written in such a way that it prevents users from specifying
an under-constrained model.

4

The PopMARSS wrapper function

Wrapper functions are written to ease the construction of the free and fixed
matrices when one is working with a MARSS model that takes specific forms.
There is no particular way that the wrapper needs to be written; it is simply
an R function that builds a marss model object for the user. PopMARSS is one
example of a wrapper function. It is probably more complex than a wrapper
function need be. It includes print functions and extensive checks for model
consistency.

4.1 PopMARSS, a wrapper for multivariate Gompertz
models

The PopMARSS function is designed for fitting multivariate Gompertz mod-
els:

xt = Bxt−1 + U + Et−1, where Et−1 ∼MVN(0,Q) (4.1a)
yt = Zxt + A + ηt, where ηt ∼MVN(0,R) (4.1b)

The y is a n× T matrix and is interpreted as n time series from t = 1 : T of
logged population counts and the x are the m hidden population trajectories.
For example, a y data matrix of 3 sites measured for 10 time steps would look
like

y =

1 2 −99 ... 8
2 5 3 ... 5
1 −99 2 ... 7

where -99 denotes a missing value. x might look like (here m = 2):

x =
[

0.8 2.2 3 ... 7.1
1.5 2.5 2.5 ... 6

]
Z is a n × m design matrix of zeros and ones where the row sums equal 1.
Z is specifying which observation time series, yi,1:T , is associated with which

10 4 The PopMARSS wrapper function

population trajectory, xj,1:T . Z is like a look up table with 1 row for each
of the n observation time series and 1 column for each of the m population
trajectories. A 1 in row i column j means that y time series i is measuring
the j-th x trajectory. Otherwise the value in Zij = 0. The case studies give
many examples of different ways the multivariate Gompertz can be used to
analyze population data. Here we only show how models are specified using
PopMARSS.

In the PopMARSS function, the user specifies the model by passing in a
parameter constraint list:

PopMARSS(data, constraint=list(Z=Z.constraint, B=B.constraint,

U=U.constraint, Q=Q.constraint, A=A.constraint,

R=R.constraint, x0=x0.constraint))

data must be a n×T matrix, that is time goes across columns (ref. Equation
1.1). Note that there is no option to change the how the variance of the
initial states is treated because this variance is set to 0 so that initial states
are treated as fixed but unknown; the initial states are one of the estimated
parameters.

The constraint options for each parameter are listed below. In all
case, however, *.constraint="ignore" can be set. This means that the pa-
rameter * is specified by the user by setting fixed=list(*=*.fixed) and
free=list(*=*.free). Note that * is used here as the placeholder for the pa-
rameter name Q, R, x0, etc. It is necessary to set the constraint to "ignore"
so that the default constraints are not applied.

4.2 Process equation constraints

4.2.1 B.constraint

B is a m × m matrix. In PopMARSS, B can take only certain constrained
forms. Below we show the forms using m = 3 in our examples.

� B.constraint="identity" The B matrix is the identity matrix:1 0 0
0 1 0
0 0 1

� B.constraint="diagonal and equal" The B matrix is diagonal and has

only 1 parameter: b 0 0
0 b 0
0 0 b

4.2 Process equation constraints 11

� B.constraint="diagonal and unequal" The B matrix is diagonal and
has m parameters: b1 0 0

0 b2 0
0 0 b3

� B.constraint="unconstrained" There are m2 B parameters: b1 b1,2 b1,3

b2,1 b2 b2,3
b3,1 b3,2 b3

� B.constraint=as.factor(c(...)) When B is specified as a length m

character or numeric vector of class factor (e.g. as.factor(c(...)), it in-
dicates that B is diagonal and the vector of factors specifies which values on
the diagonal are shared. For example, B.constraint=as.factor(c(1,1,2))
means B takes the form b1 0 0

0 b1 0
0 0 b2

There are two B parameters in this case. The factor levels can be either nu-
meric or character. c(1,1,2) is the same as c("north","north","south")

� B.constraint=matrix(..., nrow=m, ncol=m)) Passing in a m×m ma-
trix, means that B is fixed to the values in the matrix. The matrix must
be numeric.

4.2.2 U constraints

The U constraint has the following options:

� U.constraint="equal" There is only U parameter.uu
u

� U.constraint="unequal" or U.constraint="unconstrained" These are

equivalent. There are m U parameters.u1

u2

u3

� U.constraint=as.factor(c(...)) The U constraint is specified as a

length m character or numeric vector of class factor. The vector of factors
specifies which values in U are shared. For example, U.constraint=as.factor(c(1,1,2))
means that U has the following structure:

12 4 The PopMARSS wrapper functionu1

u1

u2

There are two U parameters in this case. The factor levels can be either nu-
meric or character. c(1,1,2) is the same as c("north","north","south").

� U.constraint=matrix() Passing in a m × 1 matrix, means that U is
fixed to the values in the matrix. The matrix must be numeric. In MARSS
version 1.0, U cannot varying in time, even if fixed.

4.2.3 Q constraint

The Q constraint has the following options:

� Q.constraint="diagonal and equal" There is only one process variance
term in this case. σ2 0 0

0 σ2 0
0 0 σ2

� Q.constraint="diagonal and unequal" There are m process variance

parameters in this case. σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

� Q.constraint="unconstrained" There are values on the diagonal and

off-diagonals of Q and variance and covariance is different. σ2
1 σ1,2 σ1,3

σ1,2 σ2
2 σ2,3

σ1,3 σ2,3 σ2
3

There are m process variance parameters and (m2 −m)/2 covariances in
this case, so (m2 +m)/2 parameters.

� Q.constraint="equalvarcov" There is one process variance parameter
and one covariance, so 2 parameters. σ2 σi,j σi,j

σi,j σ2 σi,j
σi,j σi,j σ2

� Q.constraint=as.factor(c(...)) The Q constraint is specified is a

length m character or numeric vector of class factor. This means that
Q is diagonal and the vector of factors specifies which values on the diago-
nal are shared. For example, Q.constraint=as.factor(c(2,1,2)) means
that Q takes the form:

4.2 Process equation constraints 13σ2
2 0 0

0 σ2
1 0

0 0 σ2
2

Q.constraint=as.factor(c(1,1,2)) means that Q takes the form:σ2

1 0 0
0 σ2

1 0
0 0 σ2

2

The factor levels can be either numeric or character. c(1,1,2) is the same
as c("north","north","south").

� Q.constraint=matrix(..., nrow=m, ncol=m)) Passing in a m×m ma-
trix, means that Q is fixed to the values in the matrix. The matrix must
be numeric.

4.2.4 x initial condition constraints

The constraints on the initial conditions of x has the following options:

� x0.constraint="equal" There is only initial state parameter.x0

x0

x0

� x0.constraint="unequal" or x0.constraint="unconstrained" These

are equivalent. There are m initial state parameters.x1,0

x2,0

x3,0

� x0.constraint=as.factor(c(...)) The initial states constraint is spec-

ified is a length m character or numeric vector of class factor. The vector
of factors specifies which initial states have the same value. For example,
x0.constraint=as.factor(c(1,1,2)) means that the initial states have
the following structure: x1,0

x1,0

x2,0

There are two initial state parameters in this case. The factor levels can be
either numeric or character. c(1,1,2) is the same as c("north","north","south").

� x0.constraint=matrix(..., nrow=m, ncol=1)) Passing in a m×1 ma-
trix, means that the initial states are fixed to the values in the matrix.
The matrix must be numeric.

14 4 The PopMARSS wrapper function

4.3 Observation equation constraints

4.3.1 Z constraint

In PopMARSS, Z is a n×m matrix that specifies which xi hidden state time
series correspond to which yj time series. Each yj time series (each row in y)
corresponds to one and only one xi time series (row in x). In PopMARSS,
the Z constraint is normally specified as a length n vector of class factor.
The i-th element of this vector specifies which population trajectory the i-
th observation time series belongs to. Here are some examples; see the case
studies for more examples.

� Z.constraint=as.factor(c(1,1,1)) All y time series are observing the
same (and only) hidden state trajectory x. Thus n = 3 and m = 1.

Z =

1
1
1

� Z.constraint=as.factor(c(1,2,3)) Each y time series corresponds to

a different hidden state trajectory. The is the default Z constraint and in
this case n = m.

Z =

1 0 0
0 1 0
0 0 1

� Z.constraint=as.factor(c(1,1,2)) The first two y time series corre-

sponds to one hidden state trajectory and the third y time series corre-
sponds to a different hidden state trajectory. Here n = 3 and m = 2.

Z =

1 0
1 0
0 1

The Z constraint can be specified using either numeric or character factor
levels. c(1,1,2) is the same as c("north","north","south")

� Z.constraint="identity" This is the default behavior. This means Z
is a n × n identity matrix and m = n. If n = 3, it is the same as
Z.constraint=as.factor(c(1,2,3)).

� Z.constraint=matrix(..., nrow=n, ncol=m)) Passing in a n×m ma-
trix, means that Z is fixed to the values in the matrix. The matrix must
be numeric.

4.3.2 A constraint

In the PopMARSS model, A is a scaling factor that is not user controllable.
Only A.constraint="scaling" is allowed.

4.3 Observation equation constraints 15

4.3.3 R constraint

The R constraint is completely analogous to the Q constraint, except that it
is n × n instead of m × m and its allowable constraints are affected by the
presence of missing data points in y. If data are missing, then R must be
diagonal.

5

Algorithms used in the MARSS package

5.1 Kalman filter and smoother

The MARSS model is a linear dynamical system with discrete time and Gaus-
sian errors. In 1960, Rudolf Kalman published the Kalman filter (Kalman,
1960), a recursive algorithm that solves for the expected value of the hid-
den state(s) at time t conditioned on the data up to time t: E(Xt|Yt

1). The
Kalman filter gives the optimal (lowest mean square error) estimate of the
unobserved xt based on the observed data up to time t for this class of linear
dynamical system. The Kalman smoother (Rauch et al., 1965) solves for the
expected value of the hidden state(s) conditioned on all the data: E(Xt|YT

1).
If the errors in the stochastic process are Gaussian, then the estimators from
the Kalman filter and smoother are also the maximum-likelihood estimates.

However, even if the the errors are not Gaussian, the estimators are opti-
mal in the sense that they are estimators with the least variability possible.
This robustness is one reason the standard Kalman filter is so powerful – it
provides well-behaving estimates of the hidden states for all kinds of mul-
tivariate autoregressive processes, not just Gaussian processes. The Kalman
filter and smoother are widely used in time-series analysis, and there are many
textbooks covering it and its applications. In the interest of giving the reader
a single point of reference, we use Shumway and Stoffer (2006) as our reference
and adopt their notation (for the most part).

The MARSSkf function provides the following Kalman filter and smoother
outputs:

xtt1 The expected value of Xt conditioned on the data up to time t− 1.
xtt The expected value of Xt conditioned on the data up to time t.
xtT The expected value of Xt conditioned on all the data from time 1 to T .

This the smoothed state estimate.
Vtt1 The variance of Xt conditioned on the data up to time t− 1. Denoted

P t−1
t in section 4.2 in Shumway and Stoffer (2006).

18 5 Algorithms used in the MARSS package

Vtt The variance of Xt conditioned on the data up to time t. Denoted P tt
in section 4.2 in Shumway and Stoffer (2006).

VtT The variance of Xt conditioned on all the data from time 1 to T .
Vtt1T The covariance of Xt and Xt−1 conditioned on all the data from time

1 to T .
Kt The Kalman gain. This is part of the update equations and relates to the

amount xtt1 is updated by the data at time t to produce xtt.
J This is similar to the Kalman gain but is part of the Kalman smoother.

See equation 4.51 in Shumway and Stoffer (2006).
Innov This has the innovations at time t, defined as ηt ≡ yt-E(Yt). These are

the residuals, the difference between the data and their predicted values.
See equation 4.40 in Shumway and Stoffer (2006).

Sigma This has the Σt, the variance-covariance matrices for the innovations
at time t. This is used for the calculation of confidence intervals, the s.e.
on the state estimates and the likelihood. See equation 4.41 in Shumway
and Stoffer (2006) for the Σt calculation.

logLik The log likelihood of the data conditioned on the model parameters.
See the section below on the likelihood calculation.

5.2 The likelihood

The likelihood of data given a specified MARSS model is part of the output of
the MARSSkf function. The likelihood computation is based on the innovations
form of the likelihood (Schweppe, 1965) and uses the output from the Kalman
filter:

logL(Θ|data) = − N

2 log(2π)
− 1

2

(
T∑
t=1

log |Σt|+
T∑
t=1

(ηt)
>Σ−1

t ηt

)
(5.1)

where N is the total number of data points and |Σt| is the determinant of the
innovations variance-covariance matrix. Reference equation 4.67 in Shumway
and Stoffer (2006); however there are a few differences between the log likeli-
hood output by MARSSkf and that described in Shumway and Stoffer (2006).

The standard likelihood calculation (equation 4.67 in Shumway and Stoffer
(2006)) is biased when there are missing values in the data. The missing data
modifications discussed in section 4.4 in Shumway and Stoffer (2006) do not
correct for this bias. Harvey (1989) discusses at length that the standard
formula (equation 4.67 in Shumway and Stoffer (2006)) is an inexact likelihood
when there are missing values. The bias is minor if there are few missing
values, but it becomes severe as the number of missing values increases. Many
ecological datasets may have over 25% missing values and this level of missing
values leads to a very biased likelihood if ones uses the inexact formula. Harvey
(1989) provides some non-trivial ways to compute the exact likelihood. We use
instead the exact likelihood correction for missing values that is presented in

5.3 Parameter estimation 19

section 12.3 in Brockwell and Davis (1991). This solution is straight-forward
to implement.

The correction involves the following changes to ηt and Σt in the equation
5.1. Suppose the value yi,t is missing. First, the corresponding i-th value of ηt
is set to 0. Second, the i-th diagonal value of Σt is set to 1 and the off-diagonal
elements on the i-th column and i-th row are set to 0.

5.3 Parameter estimation

5.3.1 Kalman-EM algorithm

In MARSS 1.0, only one method is available for parameter estimation:
maximum-likelihood parameters via an Expectation-Maximization (EM) al-
gorithm (function MARSSkem). EM algorithms are widely used algorithms that
extend maximum-likelihood estimation to cases where there are hidden ran-
dom variables in a model (Dempster et al., 1977; McLachlan and Krishnan,
2008; Harvey, 1989; Harvey and Shephard, 1993).

The EM algorithm finds the maximum-likelihood estimates of the param-
eters, Θ̂, in a MARSS model using an iterative process. Starting with an
initial set of parameters1, which we will denote Θ̂1, an updated parameter set
Θ̂2 is obtaining by finding the Θ that maximizing the expected value of the
likelihood over the distribution of the states (X) conditioned on Θ1”

Θ̂2 = arg max
Θ

EX|Θ̂1
[logL(Θ|Y T1 = yT1 , X)] (5.2)

Then using Θ̂2, an updated parameter set Θ̂3 is calculated using equation
(5.2). This is repeated until the expected log likelihood stops increasing (or
increases less than some set tolerance level).

Implementing this algorithm is actually fairly straight-forward, hence its
popularity.

1. Set an initial set of parameters, Θ̂1

2. E step: using the model for the hidden states (X) and Θ̂1, calculate the
expected values of X conditioned on all the data yT1 . Also calculate ex-
pected values of any functions of X, g(X), that appear in your expected
log likelihood function.

3. M step: put those E(X|Y T1 = yT1 , θ̂1) and E(g(X)|Y T1 = yT1 , θ̂1) into your
log likelihood function in place of X (and g(X)) and maximize with respect
to Θ. That gives you Θ̂2

4. Repeat the E and M steps until the log likelihood stops increasing

1 You can choose these however you wish, however choosing something not too far
off from the correct values will make the algorithm go faster.

20 5 Algorithms used in the MARSS package

The EM equations in our algorithm, which we term the Kalman-EM al-
gorithm, are based on Shumway and Stoffer (1982) and Ghahramani and
Hinton (1996). Our Kalman-EM algorithm is more involved than that pre-
sented in these references because our algorithm is for cases where there are
constraints within the parameter matrices (shared values, diagonal structure,
block-diagonal structure, ...) and where there are fixed values within the pa-
rameter matrices. The appendices of Holmes and Ward (2010) give the full
derivation of our EM algorithm, which spans many pages and thus is not
presented here.

5.3.2 Known problems with the EM algorithm

The EM algorithm is a hill-climbing algorithm and like all hill-climbing algo-
rithms can get stuck on local maxima. The MARSS package includes a Monte-
Carlo initial conditions searcher (function MARSSmcinit) based on Biernacki
et al. (2003) to minimize this problem. EM algorithms are also known to be
much slower than Newton methods. Because we work with ecological data,
our datasets are replete with missing values. After struggling and failing to
get Newton methods to work on our applications, we switched to using the
EM algorithm exclusively. It is slow but it consistently fits the model and finds
the maximum-likelihood values. Another R package, the DLM package, also
fits MARSS models and uses Newton methods (via R’s optim function). This
is probably faster if it works for your application, however we have not used
it since our applications all have missing values and give Newton methods
problems. Also be aware that Newton methods do not increase in likelihood
at each step and ensuring that they find the global maximum can be tricky;
the Monte Carlo initial condition search that works for EM algorithms may
not work for Newton algorithms. The MARSS package includes a function to
convert marss model objects to dlm model objects so one can easily use both
packages.

5.3.3 Future parameter estimation algorithms

The top of our to-do list is to add Bayesian parameter estimation, data-
cloning, and restricted maximum-likelihood. We have “research” versions of
these but developing versions for public consumption will take considerable
time. The DLM package is more focused on Bayesian estimation so that is an
option if you are interested in Bayesian fitting.

5.4 Parametric and innovations bootstrapping

Bootstrapping can be used to construct frequentist confidence intervals on the
parameter estimates (Stoffer and Wall, 1991) and to compute the small-sample

5.6 Model selection 21

AIC corrector for MARSS models (Cavanaugh and Shumway, 1997); the func-
tions MARSSparamCIs and MARSSaic do these computations. The MARSSboot
function does parametric and innovations bootstrapping of MARSS models.
The innovations bootstrap essentially bootstraps the residuals after model-
fitting (called innovations) and uses the algorithm by Stoffer and Wall (1991).
This is a semi-parametric bootstrap since is uses, partially, the maximum-
likelihood MARSS model. This algorithm cannot be used if there are missing
values in the data (unless all values in a given time step are missing). Also
for short time series, it gives biased bootstraps because one cannot resam-
ple the first few innovations. The MARSSboot also provides a fully parametric
bootstrap based on using the maximum-likelihood MARSS model to generate
bootstrap data. Our research (Holmes and Ward, 2010) indicates that this pro-
vides unbiased bootstrap parameter estimates and works with datasets with
missing values. Lastly, MARSSboot allows one to bootstrap from a numerically
estimated Hessian matrix.

5.5 Simulation and forecasting

The MARSSsimulate function simulates from a marss model object using the
mvrnorm function to produce draws from multivariate normal distributions
for each time step. The user must pass in a parameter list (for example from
marssfitted$params and initial conditions.

5.6 Model selection

The package provides a MARSSaic function for computing AIC, AICc and
AICb. The latter is a small-sample corrector for MARSS models. The bias
problem with AIC and AICc for short time series data are shown in Cavanaugh
and Shumway (1997) and Holmes and Ward (2010). AIC and AICc tend to
select overly complex MARSS models when the time series data are short.
AICb is a small-sample corrector that is unbiased. The algorithm for AICb for
MARSS models is given in Cavanaugh and Shumway (1997). The algorithm in
Cavanaugh and Shumway (1997) uses the innovations bootstrap (Stoffer and
Wall, 1991), which means it cannot be used when there are missing data. We
added a parametric bootstrap option for the AICb computation. This allows
one to compute AICb when there are missing data and it provides unbiased
AIC even for short time series. See Holmes and Ward (2010) for discussion
and testing of parametric AICb for MARSS models.

AICb is comprised of the familiar AIC fit term, −2 logL, plus a penalty
term that is the mean difference between the log likelihood the data under
the bootstraped ML parameter estimates and the log likelihood of the data
under the original ML parameter estimate:

22 5 Algorithms used in the MARSS package

AICb = −2 logL(Θ̂|y) + 2
1
Nb

Nb∑
i=1

−2 log
L(Θ̂∗(i)|y)
L(Θ̂|y)

(5.3)

where Θ̂ is the ML parameter set under the original data, yT1 ≡ y, Θ̂∗(i) is
a ML parameter set estimated from the i-th bootstrapped data set, y∗(i),
and Nb is the number of bootstrap data sets. It is important to notice that
the likelihood in the AICb equation is L(Θ̂∗|y) not L(Θ̂∗|y∗). In other words,
we are taking the average of the likelihood of the original data given the
bootstrapped parameter sets. See appendices of Holmes and Ward (2010)
where the algorithm is given in more detail.

6

The MARSS case studies: instructions

The case studies walk you through some analyses of multivatiate population
count data using MARSS models and the PopMARSS function. This will take
you through both the conceptual step (with pencil and paper) and a R step
which translates that conceptual model into code. The case studies are written
as a tutorial. They assume you have downloaded the case study scripts and
data sets and are working through the examples.

6.1 Set-up

� Open up R and change your working directory to the folder where the case
study data files and scripts are kept. From the command line (the >), the
command looks like setwd("your_directory/MARSS_Case_Studies") or
you can use the R GUI (File:Change dir...).

� Type in dir() and you should see a list of the case study data files.
� If you haven’t already, install the MARSS package. Type from the com-

mand line: (Windows) install.packages("MARSS.zip", repos = NULL)
or (Mac/Unix) install.packages("MARSS.tar.gz", repos = NULL). Mac
users need Xtools installed for this to work. You will need write permis-
sions for your R program directories to install packages. See the help pages
on CRAN for workarounds if you don’t have write permission.

� Type in library(MARSS) at the R command line. Now you should be
ready.

� Each case study comes with an associated script file: Case_Study_#.r
with the code you need to do the basic analyses in the worksheets. It also
contains pointers for doing extensions of the basic analyses.

24 6 The MARSS case studies: instructions

6.2 Tips

� MARSSprint(foo) will print the structure of the MARSS model that was
fit in the call foo = PopMARSS(logdata). This allows you to double check
the model you fit.

� When you run PopMARSS, it will output the number of iterations used. If
you reached the maximum, re run with EMOptions=list(max.EMiter=...)
set higher than the default (5000).

� If you misspecify the model, PopMARSS will post an error that should give
you an idea of the problem. Remember, the number of rows in your data is
n, time is across the columns, and the maximum number in constraint$Z
is m, the number of x time series in your model.

� If you are fitting to population counts, your data must be logged (base e)
before being passed in. The default missing value indicator is -99. You can
change that by passing in miss.value=....

� Running PopMARSS with no arguments except your data will fit an uncon-
strained MSSM with m = n and a diagonal R matrix.

7

Case Study 1: Count-based PVA for data with
observation error

7.1 The Problem

Estimates of extinction and quasi-extinction risk are an important risk met-
ric used in the management and conservation of endangered and threatened
species. By necessity, these estimates are based on data that contain both vari-
ability due to real year-to-year changes in the population growth rate (process
errors) and variability in the relationship between the true population size and
the actual count (observation errors). Classic approaches to extinction risk
assume the data have only process error, i.e. no observation error. In reality,
observation error is ubiquitous both because of the sampling variability and
also because of year-to-year (and day-to-day) variability in sightability.

In this case study, we are use a Kalman filter to fit a univariate (meaning
one time series) state-space model to count data for a population. We will
compute the extinction risk metrics given in Dennis et al. (1991), however
instead of using a process-error only model (as is done in the original paper),
we use a model with both process and observation error. The risk metrics
and their interpretations are the same as in Dennis et al. (1991). The only
real difference is how we compute σ2, the process error variance. However this
difference has a large effect on our risk estimates, as you will see.

In this case study, we use a density-independent model, which is the same
as the Gompertz model (4.1) with B = 1. Density-independence is often a
reasonable assumption when doing a PVA because we do such calculations for
at-risk populations that are either declining or that are well below historical
levels (and presumably carrying capacity). In an actual PVA, it is necessary
to justify this assumption and if there is reason to doubt the assumption, one
tests for density-dependence (Taper and Dennis, 1994) and does sensitivity
analyses using state-space models with density-dependence (Dennis et al.,
2006).

The univariate model is written:

26 7 Count-based PVA for data with observation error

xt = xt−1 + u+ et where et ∼ Norm(0, σ2) (7.1)
yt = xt + εt where εt ∼ Norm(0, η2) (7.2)

where yt is the logarithm of the observed population size at time t, xt is the
unobserved state at time t, u is the growth rate, and σ2 and η2 are the process
and observation error variances, respectively. In the R code to follow, σ2 is
denoted Q and η2 is denoted R (because the functions we are using are also
for multivariate state-space models and those models use Q and R for the
respective variance-covariance matrices).

7.2 Simulated data with process and observation error

We’ll start by using simulated data to see the difference between data and
estimates from a model with process error only versus a model that also
includes observation error. For our simulated data, we’ll used a decline of
5% per year, process variability of 0.01 (typical for big mammals), and a
observation variability of 0.05 (which is a bit on the high end). We’ll randomly
set 10% of the values as missing. Here’s the code:

Set things up.

sim.u = -0.05 # growth rate

sim.Q = 0.01 # process error variance

sim.R = 0.05 # non-process error variance

nYr= 30 # number of years of data to generate

fracmissing = 0.1 # fraction of years that are missing

init = 7 # log of initial pop abundance (~1100 individuals)

years = seq(1:nYr) # sequence 1 to nYr

x = rep(NA,nYr) # replicate NA nYr times

y = rep(NA,nYr)

First generate the population sizes using equation 7.1:

x[1]=init

for(t in 2:nYr)

x[t] = x[t-1]+ sim.u + rnorm(1, mean=0, sd=sqrt(sim.Q))

Add observation error and missing values to generate the observed data using
equation 7.2:

for(t in 1:nYr)

y[t]= x[t] + rnorm(1,mean=0,sd=sqrt(sim.R))

missYears =

sample(years[2:(nYr-1)],floor(fracmissing*nYr),replace = F)

y[missYears]=-99

Now let’s look at the simulated data. Stochastic population trajectories
show much variation, so it is best to look at a few at once. In figure 7.1, nine
simulations from the identical parameters (above) are shown.

7.2 Simulated data with process and observation error 27

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 20 30

6.
7

7.
0

7.
3

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 1

●

●●●
● ●

●
●

●
●●

●
●

●
●
● ●● ●●●

●
●
●●

●

●

0 5 10 20 30

5.
5

6.
5

7.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 2

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●
●

●

●●

●

●●●●
●

●

●

0 5 10 20 30

5.
5

6.
5

7.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 3

●

●●●●
●●●●

●
●●

●

●
●

●

●

●●
●

●
●

●
●
●

●

●

0 5 10 20 30

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 4

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

0 5 10 20 30

5.
8

6.
4

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 5

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●
●
●●●

●

●

●
●

●

●

●

0 5 10 20 30

6.
4

6.
8

7.
2

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 6

●
●
●

●

●
●

●

●

●

●

●
●●●

●

●●●
●

●●●●
●
●●

●

0 5 10 20 30

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 7

●●●● ●

●●
●

●
●

●

●

●

●

●●
●●

●
●

●

●

●

●
●
●
●

0 5 10 20 30

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 8

●
●
●

●

●●●
●●●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●●
●

0 5 10 20 30

6.
4

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 9

Fig. 7.1. Plot of nine simulated population time series with process and observation
error. Circles are observation and the dashed line is the true population size.

Example 7.1 (Look at the effect of parameter values on parameter
estimates)

A good way to get a feel for reasonable σ2 values is to generate simulated data
and look at the time series. As a biologist, you probably have a pretty good idea
of what kind of year-to-year population changes are reasonable for your species.
For example for most of the mammalian species I work with, the maximum
population yearly increase would be around 50% (the population could go from
1000 to 1500 in one year), but some of the fish species could easily double or
even triple in a really good year. Your observed data may bounce around a lot
for many different reasons having to do with sightability, sampling error, age-
structure, etc., but the underlying population trajectory is constrained by the
kinds of year-to-year changes in population size that are biologically possible
for your species. σ2 describes those true population changes.

Run the Exercise 1 code several times using different parameter values to get
a feel for how different the time series can look based on identical parameter

28 7 Count-based PVA for data with observation error

values. You can cut and paste from the pdf into the R command line. Typical
vertebrate σ2 values are 0.002 to 0.02, and typical η2 values are 0.005 to 0.1.
A u of -0.01 translates to an average 1% per year decline and a u of -0.1
translates to an average 10% per year decline (approximately).

Example 7.1 code
Type show.doc(MARSS, Case_study_1.R) to open a file in R with all the example

code.

par(mfrow = c(3, 3))

sim.u = -0.05

sim.Q = 0.01

sim.R = 0.05

nYr = 30

fracmiss = 0.1

init = 7

years = seq(1:nYr)

for (i in 1:9) {

x = rep(NA, nYr)

y = rep(NA, nYr)

x[1] = init

for (t in 2:nYr) x[t] = x[t - 1] + sim.u + rnorm(1, mean = 0,

sd = sqrt(sim.Q))

for (t in 1:nYr) y[t] = x[t] + rnorm(1, mean = 0, sd = sqrt(sim.R))

missYears = sample(years[2:(nYr - 1)], floor(fracmiss * nYr),

replace = FALSE)

y[missYears] = -99

plot(years[y != -99], y[y != -99], xlab = "", ylab = "log abundance",

lwd = 2, bty = "l")

lines(years, x, type = "l", lwd = 2, lty = 2)

title(paste("simulation ", i))

}

legend("topright", c("Observed", "True"), lty = c(-1, 2), pch = c(1,

-1))

7.3 Parameter estimation

7.3.1 Maximum-likelihood estimates for a model with observation
error

We put the simulated data through the Kalman-EM algorithm in order to
estimate the parameters, u, σ2, and η2, and population sizes. These are the

7.3 Parameter estimation 29

estimates using a model with process and observation variability. The function
call is kem = KalmanEM(data), where data is a vector of logged (base e)
counts with missing values denoted by -99. After this call, the ML parameter
estimates are kemU, kemQ and kem$R. There are numerous other outputs
from the KalmanEM function. To get a list of the outputs type in names(kem).
Note that kem is just a name; I could have called the output foo. Here’s some
code to fit to the simulated time series.

kem = PopMARSS(y)

Let’s look at the parameter estimates for the nine simulated time series in
figure 7.1 to get a feel for the variation. I used the KalmanEM function on each
time series to produce parameter estimate for each simulation. The estimates
are followed by the mean (over the nine simulations) and the true values:

kem.params

kem.U kem.Q kem.R
sim 1 -0.002460698 0.0069292305 0.03738727
sim 2 -0.072570534 0.0203684211 0.02021439
sim 3 -0.041641363 0.0326156365 0.03982409
sim 4 -0.053541628 0.0004211268 0.03856293
sim 5 -0.021424204 0.0036105445 0.06295700
sim 6 -0.011805007 0.0025881797 0.07943642
sim 7 -0.048926391 0.0024174915 0.03176896
sim 8 -0.067429341 0.0101489726 0.03888279
sim 9 -0.016817144 0.0069057849 0.04118779
mean sim -0.037401812 0.0095561542 0.04335796
true -0.050000000 0.0100000000 0.05000000

As expected, the estimate parameters do not exactly match the true parame-
ters, but the average should be fairly close (although 9 simulations is a small
sample size). Also note that although we don’t get u quite right, our estimates
are usually negative. Thus our estimates usually indicate declining dynamics.

The Kalman-EM algorithm also gives an estimate of the true population
size with observation error removed. This is in kem$states. Figure 7.2 shows
the KalmanEM estimated true states of the population over time as a solid
line. Note that the solid line is considerably closer to the actual true states
(dashed line) than the observations. On the other hand with certain datasets,
the Kalman filter can get it quite wrong as well!

7.3.2 Maximum-likelihood estimates for a model with no
observation error

We used the Kalman-EM algorithm to estimate the mean population rate u
and process variability σ2 under the assumption that the count data have
observation error. However, the classic approach to this problem, referred to

30 7 Count-based PVA for data with observation error

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 20 30

6.
7

7.
0

7.
3

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 1

●

●●●
● ●

●
●

●
●●

●
●

●
●
● ●● ●●●

●
●
●●

●

●

0 5 10 20 30

5.
5

6.
5

7.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 2

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●
●

●

●●

●

●●●●
●

●

●

0 5 10 20 30

5.
5

6.
5

7.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 3

●

●●●●
●●●●

●
●●

●

●
●

●

●

●●
●

●
●

●
●
●

●

●

0 5 10 20 30

5.
5

6.
5

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 4

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

0 5 10 20 30

5.
8

6.
4

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 5

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●
●
●●●

●

●

●
●

●

●

●

0 5 10 20 30

6.
4

6.
8

7.
2

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 6

●
●
●

●

●
●

●

●

●

●

●
●●●

●

●●●
●

●●●●
●
●●

●

0 5 10 20 30

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 7

●●●● ●

●●
●

●
●

●

●

●

●

●●
●●

●
●

●

●

●

●
●
●
●

0 5 10 20 30

5.
0

6.
0

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 8

●
●
●

●

●●●
●●●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●●
●

0 5 10 20 30

6.
4

7.
0

in
de

x
of

 lo
g

ab
un

da
nc

e

simulation 9

Fig. 7.2. The circles are the observed population sizes with error. The dashed lines
are the true population sizes. The solid thin lines are the estimates of the true
population size from the Kalman-EM algorithm

as the “Dennis model” (Dennis et al., 1991), uses a model that assumes the
data have no observation error; all the variability in the data is assumed to
result from process error. This approach works fine if the observation error in
the data is low, but not so well if the observation error is high. We will next
fit the data using the classic approach so that we can compare and contrast
parameter estimates from the different methods.

Using the estimation method in (Dennis et al., 1991), our data need to be
re-specified as the observed population changes (delta.pop) between censuses
along with the time between censuses (tau). We re-specify the data as follows:

den.years = years[y!=-99] # the non missing years

den.y = y[y!=-99] # the non missing counts

den.n.y = length(den.years)

delta.pop = rep(NA, den.n.y-1) # population transitions

tau = rep(NA, den.n.y-1) # step sizes

for (i in 2:den.n.y){

delta.pop[i-1] = den.y[i] - den.y[i-1]

7.3 Parameter estimation 31

tau[i-1] = den.years[i]-den.years[i-1]

} # end i loop

Next, we regress the changes in population size between censuses (delta.pop)
on the time between censuses (tau) while setting the regression intercept to 0.
The slope of the resulting regression line is an estimate of u, while the variance
of the residuals around the line is an estimate of σ2. The regression is shown
in Figure 7.3. Here is the code to do that regression:

den91 <- lm(delta.pop ~ -1 + tau)

note: the "-1" specifies no intercept

den91.u = den91$coefficients

den91.Q = var(resid(den91))

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4

−
0.

8
−

0.
4

0.
0

time step size (tau)

po
pu

la
tio

n
tr

an
si

tio
n

si
ze

Fig. 7.3. The regression of log(Nt+τ)− log(Nt) against τ . The slope is the estimate
of u and the variance of the residuals is the estimate of Q.

Here are the parameters values for the data in figure 7.2 using the process-
error only model:

den91.params

32 7 Count-based PVA for data with observation error

den91.U den91.Q
sim 1 -0.01703836 0.08572833
sim 2 -0.06714024 0.06295375
sim 3 -0.02231645 0.11654264
sim 4 -0.06822634 0.08203748
sim 5 -0.04328467 0.15894219
sim 6 -0.03032992 0.19101191
sim 7 -0.03150188 0.05207694
sim 8 -0.04689349 0.09806244
sim 9 -0.01196759 0.08499785
mean sim -0.03763322 0.10359484
true -0.05000000 0.01000000

Notice that the u estimates are similar to those from the Kalman-EM algo-
rithm, but the σ2 estimate (Q) is much larger. That is because this approach
treats all the variance as process variance, so any observation variance in the
data is lumped into process variance (in fact it appears as 2 × the observation
variance).

Example 7.2 (Look at the variability in parameter estimates)

In this example, you’ll look at how variable the parameter estimates are by
generating multiple (nsim) simulated data sets and then estimating parameter
values for each. You’ll compare the Kalman-EM estimates to the estimates
using a process error only model (i.e. ignoring the observation error).

7.3 Parameter estimation 33

Example 7.2 code
Type show.doc(MARSS, Case_study_1.R) to open a file in R with all the example

code.

sim.u = -0.05

sim.Q = 0.01

sim.R = 0.05

nYr = 30

fracmiss = 0.1

init = 7

nsim = 9

years = seq(1:nYr)

params = matrix(NA, nrow = 11, ncol = 5, dimnames = list(c(paste("sim",

1:9), "mean sim", "true"), c("kem.U", "den91.U", "kem.Q",

"kem.R", "den91.Q")))

for (i in 1:nsim) {

x.ts = matrix(NA, nrow = nsim, ncol = nYr)

y.ts = matrix(NA, nrow = nsim, ncol = nYr)

x.ts[i, 1] = init

for (t in 2:nYr) x.ts[i, t] = x.ts[i, t - 1] + sim.u + rnorm(1,

mean = 0, sd = sqrt(sim.Q))

for (t in 1:nYr) y.ts[i, t] = x.ts[i, t] + rnorm(1, mean = 0,

sd = sqrt(sim.R))

missYears = sample(years[2:(nYr - 1)], floor(fracmiss * nYr),

replace = FALSE)

y.ts[i, missYears] = -99

kem = PopMARSS(y.ts[i,], silent = TRUE)

params[i, c(1, 3, 4)] = c(kemparU, kemparQ, kemparR)

den.years = years[y.ts[i,] != -99]

den.yts = y.ts[i, y.ts[i,] != -99]

den.n.yts = length(den.years)

delta.pop = rep(NA, den.n.yts - 1)

tau = rep(NA, den.n.yts - 1)

for (t in 2:den.n.yts) {

delta.pop[t - 1] = den.yts[t] - den.yts[t - 1]

tau[t - 1] = den.years[t] - den.years[t - 1]

}

den91 <- lm(delta.pop ~ -1 + tau)

params[i, c(2, 5)] = c(den91$coefficients, var(resid(den91)))

}

params[nsim + 1,] = apply(params[1:nsim,], 2, mean)

params[nsim + 2,] = c(sim.u, sim.u, sim.Q, sim.R, sim.Q)

34 7 Count-based PVA for data with observation error

Here is an example of the output from the code:

print(params,digits=3)

kem.U den91.U kem.Q kem.R den91.Q

sim 1 -0.05410 -0.0505 0.009947 0.0337 0.0812

sim 2 0.00398 -0.0031 0.004820 0.0539 0.1217

sim 3 -0.04778 -0.0588 0.007087 0.0494 0.1264

sim 4 -0.07816 -0.0797 0.029321 0.0343 0.0990

sim 5 -0.03825 -0.0475 0.007438 0.0345 0.0910

sim 6 -0.02206 -0.0407 0.006473 0.0423 0.0993

sim 7 -0.04508 -0.0634 0.005689 0.0457 0.0959

sim 8 -0.07644 -0.0894 0.001824 0.0629 0.1316

sim 9 -0.03977 -0.0264 0.000469 0.0403 0.1035

mean sim -0.04418 -0.0511 0.008119 0.0441 0.1055

true -0.05000 -0.0500 0.010000 0.0500 0.0100

1. Re-run the code a few times to see the performance of the estimates using
a state-space model (kem.) versus the model with no observation error
(den91). You can cut and paste the code from the pdf file into an R script
file or on to the R command line.

2. Alter the observation variance, sim.R in the data generation step in order
to get a feel for performance as observations are further corrupted. What
happens as error is increased?

3. Decrease the number of years of data, nYr and re-run the parameter esti-
mation. What changes?

If you find that the exercise code takes too long to run, reduce the number of
simulations (by reducing nsim in the code).

7.4 Probability of hitting a threshold Π(xd, te)

A common extinction risk metric is ‘the probability that a population will hit
a certain threshold xd within a certain time frame te – if the observed trends
continue’. Under this definition, we can computeΠ(xd, te) using the stochastic
population model (equation 7.1) and our estimate of the parameters of that
model. In practice, the threshold used is not Ne = 1, which would be true
extinction. Often a ‘functional’ extinction threshold will be used (Ne >> 1).
Other times a threshold of ‘a pd fraction of current levels’ is used. The latter

7.4 Probability of hitting a threshold Π(xd, te) 35

is used because we often have imprecise information about the relationship
between the true population size and what we measure in the field; many
population counts are index counts. In these cases, one must use ‘fractional
declines’ as the threshold. Also, extinction estimates that use an absolute
threshold (like 100 individuals) are quite sensitive to error in the estimate of
true population size. In this workshop, we are going to use fractional declines
as the threshold, specifically pd = 0.1 which means a 90% decline below the
population size at the last census.

Π(xd, te) is typically presented as a curve showing the probabilities of
hitting the threshold (y-axis) over different time horizons (te) on the x-axis.
Extinction probabilities can be computed through Monte Carlo simulations
or analytically using equation 16 in Dennis et al. (1991) (note there is a typo
in equation 16; the last + is supposed to be -). We will use the latter method:

Π(xd, te) = π(u)×Φ
(
−xd + |u|te√

σ2te

)
+exp(2xd|u|/σ2)Φ

(
−xd − |u|te√

σ2te

)
(7.3)

where xe is the threshold and is defined as xe = log(N0/Ne), where N0 is the
current population estimate and Ne is the threshold. If we are using fractional
declines then xe = log(N0/(pd × N0)) = −log(pd). π(u) is the probability
that the threshold is eventually hit (by te = ∞). π(u) = 1 if u <= 0 and
π(u) = exp(−2uxd/σ2) if u > 0. Φ() is the cumulative probability distribution
of the standard normal (mean = 0, sd = 1). Here is the R code for that
computation (using a fractional decline threshold):

pd = 0.1 #means a 90 percent decline

tyrs = 1:100

xd = -log(pd)

p.ever = ifelse(u<=0,1,exp(-2*u*xd/Q)) #Q=sigma2

for (i in 1:100){

Pi[i] = p.ever * pnorm((-xd+abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))

+ exp(2*xd*abs(u)/Q) *

pnorm((-xd - abs(u)* tyrs[i])/sqrt(Q*tyrs[i]))

}

Figure 7.4 shows the estimated probabilities of hitting the 90% decline for the
nine 30-year times series simulated with u = −0.05, σ2 = 0.01 and η2 = 0.05.
The dashed line shows the estimates using the Kalman-EM parameter esti-
mates and the solid line shows the estimates using a process-error only model
(the den91 estimates). The circles are the true probabilities. The difference
between the estimates and the true probalities is due to errors in û. Those
errors are due largely to process error – not observation error. As we saw ear-
lier, by chance population trajectories with a u < 0 will increase, even over a
30-year period. In this case, û will be positive when in fact u < 0.

Looking at the figure, it is obvious that the probability estimates are highly
variable. However, look at the first panel. This is the average estimate (over
9 simulations). Note that on average (over 9 simulations), the estimates are

36 7 Count-based PVA for data with observation error

good. If we had averaged over 1000 simulations instead of 9, you would see
that the Kalman-EM line falls on the true line. It is an unbiased predictor.
While that may seem a small consolation if estimates for individual simulations
are all over the map, it is important for correctly specifying our uncertainty
about our estimates. Second, rather than focusing on how the estimates and
true lines match up, see if there are any forecasts that seem better than others.
For example, are 20-year predictions better than 50 and are 100-yr better or
worse. In Exercise 3, you’ll remake this with different u. You’ll discover from
that that populations in the worst shape (smallest u) have better predictions.

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

average over sims

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 1

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 2

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 3

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 4

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 5

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 6

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 7

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
0

0.
4

0.
8

time steps into future

pr
ob

ab
ili

ty
 o

f e
xt

in
ct

io
n

simulation 8

● True
Dennis
KalmanEM

Fig. 7.4. Plot of the true and estimated probability of declining 90% in different
time horizons (the x axis) for nine simulated population time series with observation
error.

Example 7.3 (The effect of parameter values on risk estimates)

In this example, you’ll recreate figure 7.4 using different parameter values.
This will give you a feel for how variability in the data and population pro-

7.4 Probability of hitting a threshold Π(xd, te) 37

cess affect the risk estimates. You’ll need to run the Example 7.2 code before
running the Example 7.3 code.

38 7 Count-based PVA for data with observation error

Example 7.3 code
Type show.doc(MARSS, Case_study_1.R) to open a file with all the example code.

par(mfrow = c(3, 3))

pd = 0.1

te = 100

tyrs = 1:te

xd = -log(pd)

for (j in c(10, 1:8)) {

real.ex = matrix(nrow = te)

denn.ex = matrix(nrow = te)

kal.ex = matrix(nrow = te)

u = params[j, 1]

Q = params[j, 3]

p.ever = ifelse(u <= 0, 1, exp(-2 * u * xd/Q))

for (i in 1:100) {

kal.ex[i] = p.ever * pnorm((-xd + abs(u) * tyrs[i])/(sqrt(Q) *

sqrt(tyrs[i]))) + exp(2 * xd * abs(u)/Q) * pnorm((-xd -

abs(u) * tyrs[i])/(sqrt(Q) * sqrt(tyrs[i])))

}

u = params[j, 2]

Q = params[j, 5]

p.ever = ifelse(u <= 0, 1, exp(-2 * u * xd/Q))

for (i in 1:100) {

denn.ex[i] = p.ever * pnorm((-xd + abs(u) * tyrs[i])/(sqrt(Q) *

sqrt(tyrs[i]))) + exp(2 * xd * abs(u)/Q) * pnorm((-xd -

abs(u) * tyrs[i])/(sqrt(Q) * sqrt(tyrs[i])))

}

u = sim.u

Q = sim.Q

p.ever = ifelse(u <= 0, 1, exp(-2 * u * xd/Q))

for (i in 1:100) {

real.ex[i] = p.ever * pnorm((-xd + abs(u) * tyrs[i])/sqrt(Q *

tyrs[i])) + exp(2 * xd * abs(u)/Q) * pnorm((-xd -

abs(u) * tyrs[i])/sqrt(Q * tyrs[i]))

}

plot(tyrs, real.ex, xlab = "time steps into future", ylab = "probability of extinction",

ylim = c(0, 1), bty = "l")

if (j <= 8)

title(paste("simulation ", j))

if (j == 10)

title("average over sims")

lines(tyrs, denn.ex, type = "l", col = "red", lwd = 2, lty = 1)

lines(tyrs, kal.ex, type = "l", col = "green", lwd = 2, lty = 2)

}

legend("bottomright", c("True", "Dennis", "KalmanEM"), pch = c(1,

-1, -1), col = c(1, 2, 3), lty = c(-1, 1, 2), lwd = c(-1,

2, 2), bty = "n")

7.5 Certain and uncertain regions 39

1. Change sim.R and rerun the Example 7.2 code. Then run the Example 7.3
code. When are the estimates using the process-error only model (den91)
worse and in what way are they worse?

2. You might imagine that you should always use a model that assumes that
the data contain observation error, since in practice observations are never
perfect. However, there is a cost to estimating that extra variance param-
eter and the cost is a more variable σ2 (Q) estimate. Play with shortening
the time series and decreasing the sim.R values. Are there situations when
the ‘cost’ of the extra parameter is greater than the ‘cost’ of ignoring ob-
servation error?

3. How does changing the extinction threshold (pd) change the extinction
probability curves? (Do not remake the data, i.e. don’t rerun the Example
7.2 code.)

4. How does changing the rate of decline (sim.u) change the estimates of
risk? Rerun the Example 7.2 code using a lower u; this will create a new
matrix of parameter estimates. Then run the Example 7.3 code. Do the
estimates seem better of worse for rapidly declining populations?

5. Rerun the Example 7.2 code using fewer number of years (nYr smaller)
and increase fracmissing. Then run the Example 7.3 code. The graphs
will start to look peculiar. Why do you think it is doing that? Hint: look
at the estimated parameters.

7.5 Certain and uncertain regions

From exercise 3, you’ve observed one of the problems with estimates of the
probability of hitting thresholds. Looking over the 9 simulations, your risk es-
timates will be on the true line sometimes and other times they are way off. So
your estimates are variable. Using only the point estimates of the probability
of 90% decline by themselves in a PVA should not be done. At the minimum,
CIs need to be added (next section), but even with CIs, the probability of
hitting declines often doesn’t capture our certainty and uncertainty about our
risk estimates.

From exercise 3, you might have also noticed that there are some time
horizons (10, 20 years) for which the estimate are highly certain (not hitting
the threshold), while for other time horizons (30, 50 years) the estimates are
all over the map. Put another way, you may be able to say with high confidence
that a 90% decline will NOT occur between years 1 to 20 and that by year 100
it most surely will have occurred. However, between the years 20 and 100, you

40 7 Count-based PVA for data with observation error

are very uncertain about the risk. The point is that you can be certain about
some forecasts while at the same time being uncertain about other forecasts.

One way to show this is to plot the uncertainty as a function of the forecast,
where the forecast is defined in terms of the forecast length (number of years)
and forecasted decline (percentage). Uncertainty is defined as how much of
the 0-1 range your 95% CI covers. Ellner and Holmes (2008) show such a
figure (their figure 1). Figure 7.5 shows a version of this figure that you can
produce with the function CSEGtmufigure(u= val, N= val, s2p= val). In
the figure, I used u = −0.05 which is a 5% per year decline, N = 25 so 25
years between the first and last census, and s2p = 0.01. The process variability
for big mammals is typically in the range of 0.002 to 0.02.

20 40 60 80 100

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

Projection interval T yrs

xe
 =

 lo
g1

0(
N

0/
N

e)

50%

90%

99%

nyrs = 30 mu = −0.05 s2.p = 0.01

high certainty P<0.05
high certainty P>0.95
uncertain
highly uncertain

Fig. 7.5. This figure shows your region of high uncertainty (dark grey). In this
region, the minimum 95% CIs (meaning if you had no observation error) span 80%
of the 0 to 1 probability. That is, you are uncertain if the probability of a specified
decline is close to 0 or close to 1. The green (dots) shows where your upper 95% CIs
does not exceed P=0.05. So you are quite sure the probability of a specified decline
is less than 0.05. The red (dots) shows where your lower 95% CIs is above P=.95. So
you are quite sure the probability is greater than P=0.95. The light grey is between
these two certain/uncertain extremes.

7.6 More risk metrics and some real data 41

Example 7.4 (Uncertain and certain regions)

Use the Example 7.4 code to re-create Figure 7.5 and get a feel for when
(what parameter ranges) risk estimates are more certain and when they are
less certain.

Exercise 7.4 code
Type show.doc(MARSS, Case_study_1.R) to open a file in R with all the example

code.

par(mfrow = c(1, 1))

CSEGtmufigure(N = 30, u = -0.05, s2p = 0.01)

N are the number of years of data, u is the mean population growth rate, and
s2p is the process variance.

7.6 More risk metrics and some real data

The previous sections have focused on the probability of hitting thresholds
because this is an important and common risk metric used in PVA and it
appears in IUCN Red List criteria. However, as you have seen, there is high
uncertainty associated with such estimates. Part of the problem is that prob-
ability is constrained to 0 to 1, and it is easy to get estimates with CIs that
span 0 to 1. Other metrics of risk, û and the distribution of the time to hit
a threshold (Dennis et al., 1991), don’t have this problem and may be more
informative. Figure 7.6 shows different risk metrics from Dennis et al. (1991)
on a single plot. This figure is generated by the call

dat=read.table(datafile, skip=1)

dat=as.matrix(dat)

CSEGriskfigure(dat)

The datafile is the name of the data file, with column 1 = years and column
2 = population count (logged). CSEGriskfigure() has a number of arguments
that can be passed in to change the default behavior. The variable te is the
forecast length (default is 100 years), threshold is the extinction threshold
either as an absolute number, if absolutethresh=T, or as a fraction of current
population count, if absolutethresh=F. The default is absolutethresh=F
and threshold=0.1. datalogged=TRUE means the data are already logged;
this is the default.

42 7 Count-based PVA for data with observation error

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●

1970 1974 1978 1982 1986 1990

20
40

60
80

Year

P
op

. E
st

im
at

e

u est = −0.054 (95% CIs −0.16 , 0.05)
 Q est = 0.055

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

years into future

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

Prob. to hit 2

95% CI
75% CI
mean

0 50 100 150 200

0.
00

0
0.

01
0

0.
02

0

years into future

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

PDF of time to threshold
 given it IS reached

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Number of ind. at Ne

pr
ob

ab
ili

ty
 to

 h
it

th
re

sh
ol

d

90% threshold

Prob. of hitting threshold in 100 yrs

0 20 40 60 80 100

0
10

20
30

40
50

Sample projections

years into the future

N

20 40 60 80 100

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

Projection interval T yrs

xe
 =

 lo
g1

0(
N

0/
N

e)

50%

90%

99%

nyrs = 22 mu = −0.054 s2.p = 0.055

Fig. 7.6. Risk figure using data for the critically endangered African Wild Dog
(data from Ginsberg et al. 1995). This population went extinct after 1992.

Example 7.5 (Example of risk figures for different species)

Use the Example 7.5 code to re-create Figure 7.6. The package includes other
data for you to run: prairiechicken from the endangered Attwater Prairie
Chicken, graywhales from Gerber et al. (1999), and grouse from the Sharp-
tailed Grouse (a species of U.S. federal concern) in Washington State. If you
have other textfiles of data, you can run those too. The commented lines show
how to read in data from a tab-delimited text file with a header line.

7.7 Confidence intervals 43

Exercise 5 code
Type show.doc(MARSS, Case_study_1.R) to open a file in R with all the example

code.

#If you have your data in a tab delimited file with a header

#This is how you would read it in using file.choose()

#to call up a directory browser.

#However, the package has the datasets for the exercises

#dat=read.table(file.choose(), skip=1)

#dat=as.matrix(dat)

dat = wilddogs

CSEGriskfigure(dat, CI.method="hessian", silent=TRUE)

7.7 Confidence intervals

The figures produced by CSEGriskfigure() have confidence (95% and 75%)
on the probabilities in the top right panel. The standard way to produce
these CIs is via parametric bootstrapping. Here are the steps in a parametric
bootstrap:

� You estimate u and σ2 and η2

� Then you simulate time series using those estimates and equations 7.1 and
7.2

� Then you re-estimate your parameters from the simulated data (using say
KalmanEM(simdata)

� Repeat for 1000s of time series simulated using your estimated parameters.
This gives you a large set of bootstrapped parameter estimates

� For each bootstrapped parameter set, compute a set of extinction estimates
(you use equation 7.3 and code from exercise 3)

� The α% ranges on those bootstrapped extinction estimates gives you your
α CIs on your probabilities of hitting thresholds

Look at the code in CSEGriskfigure.r to see how to do this in R (type
CSEGriskfigure at the R command line and the code will be shown).

Producing parameter estimates by estimating them from the simulated
data would be quite slow. Therefore for the manual, I used approximate CIs
on the parameters using the inverse of a numerically estimated Hessian ma-
trix. This uses an estimate of the variance-covariance matrix of the param-
eters from the inverse of a numerically estimated Hessian matrix. The function
CSEGriskfigure() has an option you can set CI.method = c("hessian", "param-
boot", "nonparamboot", "none") which tells it how to compute the CIs. I
set CI.method="hessian". Using an estimated Hessian matrix to compute

44 7 Count-based PVA for data with observation error

CIs is a handy trick that can be used for all sorts of maximum-likelihood pa-
rameter estimates. Look at the code in CSEGriskfigure() to see how to use
the nlme package in R to do this easily.

7.8 Other parameter estimation methods

Restricted maximum-likelihood algorithms are also available for state-space
models, both univariate and multivariate (Staples et al., 2004; Hinrichsen,
2009). REML can give parameter estimates with lower variance than the
Kalman-EM algorithm. Also the REML algorithm is much easier to code than
the Kalman-EM algorithm (see code provided with the cited papers). How-
ever, the algorithms for REML when there are missing values are not currently
available, so you are limited to data with no missing values (at the moment).
Data with cycles, from age-structure or predator-prey interactions, are diffi-
cult to analyze and both REML and Kalman-EM will give poor estimates for
this type of data. The slope method (Holmes, 2001), while more ad-hoc, is ro-
bust to those problems. Holmes et al. (2007) used the slope method in a large
study of data from endangered and threatened species. Ellner and Holmes
(2008) showed that the slope estimates are close to the theoretical minimum
uncertainty. However estimates using the slope method are not easily extended
to multi-site data. Also our current research is focused on Kalman-based and
REML algorithms because they are true maximum-likelihood methods, and
the research we do on model selection requires that. However you should be
aware that when doing a PVA using a time series with fewer than 25 years
of data, the slope method (Holmes, 2001) is often less biased and (much) less
variable because that method is less data-hungry (Holmes, 2004).

8

Case study 2: Combining multi-site and
subpopulation data to estimate trends and
trajectories

8.1 The problem

In this case study, we will use multivariate state-space models to combine
surveys from multiple sites into one estimate of the average long term popu-
lation growth rate and the year-to-year variability in that growth rate. Note
this is not quite the same as estimating the ‘trend’; ‘trend’ often means what
population change happened, whereas the long-term population growth rate
refers to the underlying population dynamics. We will use as our example a
dataset from harbor seals in the Puget Sound, Washington, USA.

We have five regions where harbor seals were censused from 1978-1999
while hauled out of land1. During the period of this dataset, harbor seals
were recovering steadily after having been reduced to low levels by hunting
prior to protection. The methodologies were consistent throughout the 20
years of the data but we do not know what fraction of the population that
each region represents nor do we know the observation-error variance for each
region. Given differences between behaviors of animals in different regions and
the numbers of haul-outs in each region, the observation errors may be quite
different. The regions have had different levels of sampling; the best sampled
region has only 4 years missing while the worst has over half the years missing.

Figure 8.1 shows the data. The numbers on each line denote the different
regions:

1 SJF
2 SJI
3 EBays
4 PSnd
5 HC

1 Jeffries et al. 2003. Trends and status of harbor seals in Washington State: 1978-
1999. Journal of Wildlife Management 67(1):208–219

46 8 Combining multi-site and subpopulation data

1

1
1

1

1
1

1 1
1 1

1

1

1

1
1

1

1 1

1980 1985 1990 1995

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

lo
g(

co
un

ts
)

2

2

2
2

2 2

2 2 2
2 2

2 2 2
2

2 2
2

3

3

3
3

3 3 3 3 3 3 3 3 3
3

3
3 3

4

4
4

4

4
4

4 4 4 4

5

5
5

5

5

5
5

5

Puget Sound Harbor Seal Surveys

Fig. 8.1. Plot of the of the count data from the five harbor seal regions (Jeffries et
al. 2003). Each region is an index of the total harbor seal population, but the bias
(the difference between the index and the true population size) for each region is
unknown.

For this case study, we will assume that the underlying population process
is a stochastic exponential growth process with rates of increase that were
not changing through 1978-1999. However, we are not sure if all five regions
sample a single “total Puget Sound” population or if there are independent
subpopulations. You are going to estimate the long-term population growth
rate using different assumptions about the population structures (1 big pop-
ulation versus multiple smaller ones) and observation error structures to see
how your assumptions change your estimates.

The data for this case study are in the MARSS package. The data have
time running down the rows and we need time across the columns for the
PopMARSS function, so we will transpose the data:

dat = t(harborSealWA)

years = dat[1,]

n = nrow(dat) - 1

dat = dat[2:nrow(dat),]

8.2 Analyze assuming a single total Puget Sound population 47

dat <- read.csv("datafile.csv",header=TRUE)

dat <- read.table("datafile.csv",header=TRUE)

If you needed to read data in from a comma-delimited or tab-delimited file,
these are the commands to do that:

dat = t(harborSealWA)

years = dat[1,]

n = nrow(dat) - 1

dat = dat[2:nrow(dat),]

dat <- read.csv("datafile.csv",header=TRUE)

dat <- read.table("datafile.csv",header=TRUE)

The years (years) are in row 1 of dat and the logged data are in the rest of
the rows. The number of observation time series (n) is the number of rows in
dat minus 1 (for years row). Let’s look at the first few years of data:

print(harborSealWA[1:8,], digits=3)

Years SJF SJI EBays PSnd HC
[1,] 1978 6.03 6.75 6.63 5.82 6.6
[2,] 1979 -99.00 -99.00 -99.00 -99.00 -99.0
[3,] 1980 -99.00 -99.00 -99.00 -99.00 -99.0
[4,] 1981 -99.00 -99.00 -99.00 -99.00 -99.0
[5,] 1982 -99.00 -99.00 -99.00 -99.00 -99.0
[6,] 1983 6.78 7.43 7.21 -99.00 -99.0
[7,] 1984 6.93 7.74 7.45 -99.00 -99.0
[8,] 1985 7.16 7.53 7.26 6.60 -99.0

The -99’s in the data are missing values. The algorithm will ignore those
values when estimating x1:T .

8.2 Analyze assuming a single total Puget Sound
population

The first step in a state-space modeling analysis is to specify the population
structure and how the regions relate to that structure. The general state-space
model is

Xt = BXt−1 + U + Et, where Et ∼ MVN(0,Q) (8.1)
Yt = ZXt + A + ηt, where ηt ∼ MVN(0,R) (8.2)

where all the bolded symbols are matrices. To specify the structure of the
population and observations, we will specify what those matrices look like.

48 8 Combining multi-site and subpopulation data

8.2.1 A single population process, X

When we are looking at trends over a large geographic region, we might make
the assumption that the different census sites are measuring a single popu-
lation if we think animals are moving sufficiently such that the whole area
(multiple regions together) is ”well-mixed”. We write a model of the popula-
tion abundance as:

nt = exp(u+ et)nt−1, (8.3)

where nt is the total count in year t, u is the mean population growth rate,
and et is the deviation from that average in year t. We then take the log of
both sides and write the model in log space:

xt = xt−1 + u+ et. (8.4)

xt = log nt. When there is one effective population, there is one x, there for
Xt is a 1×1 matrix. There is one population growth rate (u) and there is one
process variance (σ2). Thus U and Q are 1× 1 matrices.

8.2.2 The observation process, Y

For this first analysis, we assume that all five regional time series are observing
this one population trajectory but they are scaled up or down relative to that
trajectory. In effect, we think that animals are moving around a lot and our
regional samples are some fraction of the population. There is year-to-year
variation in the fraction in each region, just by chance. Notice that under this
analysis, we don’t think the regions represent independent subpopulations but
rather independent observations of one population.

Our model for the data, Yt = A + ZXt + ηt, is written out as:
y1,t
y2,t
y3,t
y4,t
y5,t

 =

A1

A2

A3

A4

A5

+

1
1
1
1
1

xt +

ε1,t
ε2,t
ε3,t
ε4,t
ε5,t

 (8.5)

Each yi is the time series for a different region (the names for the numbered
regions are given on page 2). The A’s are the bias between the regional sample
and the total population. The A’s are scaling (or intercept-like) parameters
that are not important for trend estimation2. We will ignore them 3. We
2 To get rid of the A’s, we scale multiple observation time series against each other;

thus one A will be fixed at 0
3 Estimating the bias between regional indices and the total population is important

for getting an estimate of the total population size. However, the time series
analysis that we are doing for this workshop is not useful for estimating A’s.
Instead one uses some type of mark-recapture data. For trend estimation, the A’s
are not important. The regional observation variance captures increased variance
due to a regional being a smaller sample of th total population.

8.2 Analyze assuming a single total Puget Sound population 49

allow that each region could have a unique observation variance and that
the observation errors are independent between regions. Lastly, we assume
that the observations errors on log(counts) are normal and thus the errors on
(counts) are log-normal.4

We specify independent observation errors with unique variances by εt ∼
MVN(0,R), where

R =

η1,t 0 0 0 0
0 η2,t 0 0 0
0 0 η3,t 0 0
0 0 0 η4,t 0
0 0 0 0 η5,t

 (8.6)

Z is specifying which observation time series, yi,1:T , is associated with which
population trajectory, xj,1:T . Z is like a look up table with 1 row for each
of the n observation time series and 1 column for each of the m population
trajectories. A 1 in row i column j means that observation time series i is
measuring state process j. Otherwise the value in Zij = 0. Since we have only
1 population trajectory, all the regions must be measuring that one population
trajectory. Thus Z is n× 1.

8.2.3 Set the constraints for PopMARSS

Now that we have specified our state-space model, we set the arguments that
will tell the function PopMARSS the structure of our model. We do this by
passing in the argument constraint to PopMARSS. constraint is a list which
specifies any constraints on Z, U , Q, etc. The function call will now look like:

kem = PopMARSS(dat, constraint=list(Z=Z.constraint, U=U.constraint,

Q=Q.constraint, R=R.constraint))

First we set the Z constraint. We need to tell the PopMARSS function that
Z is a column vector of 1s (as in equation 8.5). We do this by specifying
which data time series belongs to which population using a 1×n vector as an
object of class factor. The i-th element specifies which population trajectory
the i-th observation time series belongs to. Since there is only one population
trajectory in analysis 1, we will have a vector of five 1’s. Every observation
time series is measuring the first, and only, population trajectory. In later
analyses, you’ll see how to specify the constraint on Z when we have multiple
populations.

Z.constraint = as.factor(c(1,1,1,1,1))

Note, these are the levels corresponding to each of the n time series and thus
must be wrapped in as.factor() so that PopMARSS recognizes it. You can

4 The assumption of normality is not unreasonable since these regional counts are
the sum of counts across multiple haul-outs.

50 8 Combining multi-site and subpopulation data

use either numeric or character levels. Next we specify that the R variance-
covariance matrix only has terms on the diagonal (the variances) with the
off-diagonal terms (the covariances) equal to zero.5 constraint.

R.constraint = "diagonal and unequal"

The and unequal part specifies that the variances are allowed to be unique
on the diagonal. If we wanted to force the observation variances to be equal at
all regions, we would use diagonal and equal. For analysis 1, we only need
to set constraints on Z and R. Since there is only one population, there is only
one U and Q (they are scalars), so there are no constraints to set on them.

1

1
1

1

1
1

1 1
1 1

1

1

1

1
1

1

1 1

1980 1985 1990 1995

5
6

7
8

9

in
de

x
of

 lo
g

ab
un

da
nc

e

2

2

2
2

2 2

2 2 2
2 2

2 2 2 2
2 2

2

3

3
3

3
3 3 3 3 3 3 3 3 3

3
3

3 3

4

4
4

4

4
4

4 4 4 4

5

5
5

5

5

5
5

5

Observations and total population estimate

Fig. 8.2. Plot of the estimate of “ln total harbor seals in Puget Sound” (minus
the unknown bias for time series 1) against the data. The estimate of the total seal
count has been scaled relative to the first time series. The 95% CIs on the population
estimates are the dashed lines. These are not the CIs on the observations and the
observations (the numbers) should not fall between the CI lines.

5 For the EM function that we wrote for this workshop, the measurement errors
must be uncorrelated if there are missing values in the data.

8.2 Analyze assuming a single total Puget Sound population 51

8.2.4 The PopMARSS output

The output from PopMARSS, here assigned the name kem, is a list of objects.
To see all the objects in it:

The following are some of the most used objects. kem1$states are the
maximum-likelihood estimates of “total harbor seal population” scaled to
the first observation data series (Fig. 8.2), and kem1$states.se are the
standard errors on those estimates. To get 95% CIs, use kem1$states +/-
1.96*kem1$states.se. One of the biases, the As, cannot be estimated and
arbitrarily our algorithm choses A1 = 0, so the population estimate is scaled to
the first observation time series. Since we are only trying to estimate the trend,
u, the unknown bias is unimportant. Figure 8.2 shows a plot of kem1$states
with its 95% CIs over the data. Because kem1$states has been scaled relative
to the first time series, it is on top of that time series.

The estimated parameters are a list in kem1: kem1$par. To get the element
U of that list, which is the estimated long term population growth rate, type
in kem1parU. Multiply by 100 to get the percent increase per year. The
estimated process variance is given by kem1parQ. The log-likelihood of this
model is kem1$logLik. We estimated 1 initial x (t = 0), 1 process variance, 1
U , 4 A’s, and 5 observation variances’s. So K = 12 parameters. The AIC of
this model is −2× loglike+ 2K, which we can show by typing kem1$AIC.

Example 8.1 (Fit the single population model to the harbor seal
data)

Analyze the harbor seal data using a single population model. The code for Ex-
ample 8.1 shows you how to input data and send it to the function PopMARSS.
When you run PopMARSS, it will print information on the structure of the
model it is fitting and how many iterations it took to run. As you run the
examples, add the estimates to the table at the end of the chapter so you can
compare estimates across the examples.

52 8 Combining multi-site and subpopulation data

Example 8.1 code
Type show.doc(MARSS, Case_study_2.R) to open a file in R with all the example

code.

dat = t(harborSealWA)

years = dat[1,]

n = nrow(dat) - 1

dat = dat[2:nrow(dat),]

legendnames = (unlist(dimnames(dat)[1]))

Z.constraint = as.factor(c(1, 1, 1, 1, 1))

R.constraint = "diagonal and unequal"

kem1 = PopMARSS(dat, constraint = list(Z = Z.constraint, R = R.constraint))

matplot(years, t(dat), xlab = "", ylab = "index of log abundance",

pch = c("1", "2", "3", "4", "5"), ylim = c(5, 9), bty = "L")

lines(years, kem1$states - 1.96 * kem1$states.se, type = "l",

lwd = 1, lty = 2, col = "red")

lines(years, kem1$states + 1.96 * kem1$states.se, type = "l",

lwd = 1, lty = 2, col = "red")

lines(years, kem1$states, type = "l", lwd = 2)

title("Observations and total population estimate", cex.main = 0.9)

kem1$par

kem1$logLik

kem1$AIC

8.3 Changing the assumption about the observation
variances

The variable kem1parR contains the estimates of the observation error vari-
ances. It is a matrix. Here is R from Example 8.1:

print(kem1parR, digits=3)

SJF:1 SJI:2 EBays:3 PSnd:4 HC:5
SJF:1 0.0325 0.0000 0.0000 0.0000 0.000
SJI:2 0.0000 0.0355 0.0000 0.0000 0.000
EBays:3 0.0000 0.0000 0.0131 0.0000 0.000
PSnd:4 0.0000 0.0000 0.0000 0.0113 0.000
HC:5 0.0000 0.0000 0.0000 0.0000 0.195

Notice that the variances along the diagonal are all different–we estimated 5
unique observation variances. We might be able to improve the fit (relative
to the number of estimated parameters) by assuming that the observation

8.3 Changing the assumption about the observation variances 53

variance is equal across regions but the errors are independent. This means
we estimate 1 observation variance instead of 5. This is a fairly standard
assumption for data that come from the same survey methodology6.

To impose this constraint, we set the R constraint to

R.constraint="diagonal and equal"

This tells PopMARSS that all the η2’s along the diagonal in R are the same. To
fit this model to the data, call PopMARSS as:

Z.constraint = as.factor(c(1,1,1,1,1))

R.constraint = "diagonal and equal"

kem2 = PopMARSS(dat, constraint=

list(Z=Z.constraint, R=R.constraint))

We estimated 1 initial x, 1 process variance, 1 U , 4 A’s, and 1 observation
variance. So K = 8 parameters. The AIC for this new model compared to the
old model with 5 observation variances is:

c(kem1$AIC,kem2$AIC)

[1] -10.231173 8.384659

A smaller AIC means a better model. The difference between the 1 observation
variance versus the unique observation variances is >10, suggesting that the
unique observation variances model is better. Go ahead and type in the R
code. Then add the parameter estimates to the table at the back.

One of the key diagnostics when you are comparing fits from multiple
models, it to examine whether the model is flexible enough to fit the data.
You do this by looking for temporal trends in the the residuals between the
estimated population states (e.g. kem2$states) and the data. In Fig. 8.3, the
residuals for analysis 2 are shown. Ideally , these residuals should not have a
temporal trend. They should look cloud-like. The fact that the residuals for
analysis 2 have a strong temporal trend is an indication that our 1 population
model is too restrictive for the data7.

Example 8.2 (Fit a model with shared observation variances)

Analyze the data using the same population model as in example 1, but con-
strain the R matrix so that all sites have the same observation variance. The

6 This is not a good assumption for these data since the number haul-outs in each
region varies and the regional counts are the sums across all haul-outs in a region.
We’ll see that this is a poor assumption when we look at the AIC values.

7 When comparing models via AIC, it is important that you only compare models
that are flexible enough to fit the data. Fortunately, inadequate models will usually
have very high AICs and fall out of the mix.

54 8 Combining multi-site and subpopulation data

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

5 10 15

−
0.

4
−

0.
2

0.
0

0.
2

Index

re
si

du
al

s

SJF

●

●

●

●

●

●

●
●

●
●●

●
●●

●

●

●

●

5 10 15

−
0.

4
−

0.
2

0.
0

0.
2

Index

re
si

du
al

s

SJI

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

5 10 15

−
0.

2
0.

0
0.

1
0.

2

Index

re
si

du
al

s

EBays

●

●

●

●

●

●

●
● ● ●

2 4 6 8

−
0.

2
0.

0
0.

1

Index

re
si

du
al

s

PSnd

●

●

●

●

●

●

●

●

1 3 5 7

−
0.

4
0.

0
0.

4
0.

8

Index

re
si

du
al

s

HC

Fig. 8.3. Residuals for the model with a single population. The plots of the residuals
should not have trends with time, but they do... This is an indication that the single
population model is inconsistent with the data. The code to make this plot is given
in the script file for case study 2.

Example 8.2 code shows you how to do this. It also shows you how to make
the diagnostics figure (Figure 8.3).

8.4 Analyze the data assuming North and South subpopulations 55

Example 8.2 code
Type show.doc(MARSS, Case_study_2.R) to open a file in R with all the example

code.

#fit model

Z.constraint = as.factor(c(1,1,1,1,1))

R.constraint = "diagonal and equal"

kem2 = PopMARSS(dat, constraint=

list(Z=Z.constraint, R=R.constraint))

#show parameters

kem2parU #population growth rate

kem2parQ #process variance

kem2parR[1,1] #observation variance

kem2$logLik #log likelihood

c(kem1$AIC,kem2$AIC)

#plot residuals

plotdat = t(dat); plotdat[plotdat == -99] = NA;

matrix.of.biases = matrix(kem2parA,

nrow=nrow(plotdat),ncol=ncol(plotdat),byrow=T)

xs = matrix(kem2$states,

nrow=dim(plotdat)[1],ncol=dim(plotdat)[2],byrow=F)

resids = plotdat-matrix.of.biases-xs

par(mfrow=c(2,3))

for(i in 1:n){

plot(resids[!is.na(resids[,i]),i],ylab="residuals")

title(legendnames[i])

}

par(mfrow=c(1,1))

8.4 Analyze the data assuming North and South
subpopulations

For the third analysis, we will change our assumption about the structure
of the population. We will assume that there are 2 subpopulations, North
and South, and that regions 1 and 2 (Strait of Juan de Fuca and San Juan
Islands) fall in the north subpopulation and regions 3, 4 and 5 fall in the south
subpopulation. For this analysis, we will assume that these two subpopulations
share their growth parameter, u, and process variance, σ2, since they share
a similar environment and prey base. However we postulate that because of
fidelity to natal rookeries for breeding, animals do not move much year-to-year
between the north and south and the two subpopulations are independent.

56 8 Combining multi-site and subpopulation data

We need to write the state-space model to reflect this population structure.
There are two subpopulations, xn and xs, and they have the same growth rate
u: [

xn,t
xs,t

]
=
[
xn,t−1

xs,t−1

]
+
[
u
u

]
+
[
en,t
es,t

]
(8.7)

We specify that they are independent by specifying that their year-to-year
population fluctuations (their process error) come from a multivariate normal
with no covariance:[

en,t
es,t

]
∼MVN

(
mean =

[
0
0

]
, varcov =

[
σ2 0
0 σ2

])
(8.8)

For the observation process, we use a matrix to associate the regions with
their respective xn and xs values:

y1,t
y2,t
y3,t
y4,t
y5,t

 =

A1

A2

A3

A4

A5

+

1 0
1 0
0 1
0 1
0 1

[
xn,t
xs,t

]
+

ε1,t
ε2,t
ε3,t
ε4,t
ε5,t

 (8.9)

8.4.1 Specifying the PopMARSS arguments

We need to change the Z constraint to specify that there are 2 subpopulations
(north and south), and that regions 1 and 2 are in the north subpopulation
and regions 3,4 and 5 are in the south subpopulation:

Z.constraint = as.factor(c(1,1,2,2,2))

U.constraint = "equal"

Q.constraint = "diagonal and equal"

We want to specify that the u’s are the same for each subpopulation and that
Q is diagonal with equal σ2’s. To do this, we set

Z.constraint = as.factor(c(1,1,2,2,2))

U.constraint = "equal"

Q.constraint = "diagonal and equal"

This says that there is one u and one σ2 parameter and both subpopulations
share it (if we wanted the u’s to be different, we would use U.constraint="unequal"
or leave off the U constraint since the default behavior is U.constraint="unequal").

Now we fit this model to the data and pass in the new constraints:

Z.constraint = as.factor(c(1,1,2,2,2))

U.constraint = "equal"

Q.constraint = "diagonal and equal"

R.constraint = "diagonal and equal"

kem3 = PopMARSS(dat, constraint=list(Z=Z.constraint,

R=R.constraint, U=U.constraint, Q=Q.constraint))

8.4 Analyze the data assuming North and South subpopulations 57

Model Structure is
m: 2 state process(es)
n: 5 observation time series

Group 1 :
SJF EBays HC

Group 2 :
SJI PSnd

A : scaling
B : identity
Q : diagonal and equal
R : diagonal and equal
U : equal
x0: unconstrained
Converged in 25 interations. Max.iter was 5000.

The output tells us the structure of the model that was fit to the data and how
long it took to fit the model. We estimated 2 initial x’s, 1 process variance,
1 U , 3 A’s, and 1 observation variance. So K = 8 parameters. The Kalman
filter requires an initial condition (t = 0) for each x time series. When m < n,
the number of A’s estimated is n − m since one of the A’s for each state
process will be set to 0. The AIC is 2*8 - 2*kem3$logLik. Fig. 8.4 shows
the residuals for the 2 subpopulations case. The residuals look better (more
cloud-like) but the Hood Canal residuals are still temporally correlated.

Example 8.3 (Use PopMARSS to fit a model with North and South
subpopulations)

58 8 Combining multi-site and subpopulation data

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

5 10 15

−
0.

2
0.

0
0.

2

Index

re
si

du
al

s

SJF

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

5 10 15

−
0.

15
−

0.
05

0.
05

0.
15

Index

re
si

du
al

s

SJI

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

5 10 15

−
0.

2
0.

0
0.

1

Index

re
si

du
al

s

EBays

●

●

●

●

●

●

●
●

●
●

2 4 6 8

−
0.

3
−

0.
1

0.
1

Index

re
si

du
al

s

PSnd

●

●

●

●

●

●

●

●

1 3 5 7

−
0.

2
0.

2
0.

4

Index

re
si

du
al

s

HC

Fig. 8.4. The residuals for the analysis with a North and South subpopulation. The
plots of the residuals should not have trends with time. Compare with the residuals
for the analysis with one subpopulation.

Example 8.3 code
Type show.doc(MARSS, Case_study_2.R) to open a file in R with all the example

code.

#fit model

Z.constraint = as.factor(c(1,1,2,2,2))

U.constraint = "equal"

Q.constraint = "diagonal and equal"

R.constraint = "diagonal and equal"

kem3 = PopMARSS(dat, constraint=list(Z=Z.constraint,

R=R.constraint, U=U.constraint, Q=Q.constraint))

#plot residuals

plotdat = t(dat); plotdat[plotdat == -99] = NA;

matrix.of.biases = matrix(kem3parA,

nrow=nrow(plotdat),ncol=ncol(plotdat),byrow=T)

par(mfrow=c(2,3))

for(i in 1:n){

j=c(1,1,2,2,2)

xs = kem3$states[j[i],]

resids = plotdat[,i]-matrix.of.biases[,i]-xs

plot(resids[!is.na(resids)],ylab="residuals")

title(legendnames[i])

}

par(mfrow=c(1,1))

8.5 Using PopMARSS to fit other population and observation error structures 59

8.5 Using PopMARSS to fit other population and
observation error structures

Now work through a number of different structures and fill out the table
at the back of this worksheet. At the end you’ll see how your estimation of
the mean population growth rate varies under different assumptions about
the population and the data. All these analyses assume that the observation
variances are unique at each site.

Example 8.4 (Five subpopulations)

Analyze the data using a model with five subpopulations, where each site is
sampling one of the subpopulations. Assume that the subpopulation are in-
dependent (diagonal Q), however let each subpopulation share the same pop-
ulation parameters, u and σ2. The Example 8.4 code shows how to set the Pop-

MARSS arguments for this case. You can change R.constraint="diagonal and equal"
to make all the observation variances equal.

Example 8.4 code
Type show.doc(MARSS, Case_study_2.R) to open a file in R with all the example

code.

Z.constraint=as.factor(c(1,2,3,4,5))

U.constraint="equal"

Q.constraint="diagonal and equal"

R.constraint="diagonal and unequal"

kem = PopMARSS(dat, constraint=list(Z=Z.constraint,

U=U.constraint, Q=Q.constraint, R=R.constraint))

Example 8.5 (Two subpopulations but different divisions)

Analyze the data using a model that assumes that the Strait of Juan de Fuca
and San Juan Islands sites represent a Northern Puget Sound subpopulation,
while the other three sites represent a Southern Puget Sound subpopulation.
This time assume that each population trajectory (north and south) has dif-
ferent population parameters, u and σ2 and that each of the five sampling
sites has a different observation variance. Try to write your own code for
Examples 5-7. If you get stuck (or want to check your work, you can open

60 8 Combining multi-site and subpopulation data

a script file with all the Case Study 2 examples by typing show.doc(MARSS,

Case_study_2.R) at the R command line.

Example 8.6 (Hood Canal treated separately but covaries with oth-
ers)

Analyze the data using a model with two subpopulations with the divisions
being Hood Canal versus everywhere else. Set

Q.constraint = "equalvarcov"

to make all the subpopulations covary in time but with equal covariances and
variances.

Example 8.7 (Three subpopulations with shared parameter values)

Analyze the data using a model with three subpopulations as follows: North
(sites 1 and 2), South (sites 3 and 4), Hood Canal (site 5). You can specify
that some subpopulations share parameters while others don’t. You do this by
using a vector of factors for the constraints:

Q.constraint = as.factor(c("coastal", "interior", "interior"))

U.constraint = as.factor(c("puget sound", "puget sound", "hood canal"))

R.constraint = as.factor(c("boat","boat","plane","plane","plane"))

When Q.constraint and U.constraint are vectors (passed in as a factor),
as above, they specify which X’s share parameter values. The factors must be
a vector of length m, where m is the number of X’s. The i-th factor corre-
sponds to the i-th X. In the example above, we specified that X1 has its own
process variance Q (which we named “coastal”) and X2 and X3 share a pro-
cess variance value (which we named “interior”). For the long-term trends, we
specified that X1 and X2 share a long-term trend (“puget sound”) while X3 is
allowed to have a separate trend (“hood canal”).

When R.constraint is vector of factors, it specifies which Y ’s have the same
observation variance. We need a 1× 5 vector here because we need to specify
a value for each observation time series (there are 5). Here we imagine that
observation time series 1 and 2 are boat surveys while the others are plane
surveys and we want to allow the variances to differ based on methodology.

8.6 Discussion 61

8.6 Discussion

Case Study 2 shows you how to combine multiple datasets that are measuring
the same underlying process and fit those data using a multivariate state-space
framework. This allows you to combine data sets and use all the available data.
You can also combine data that are discontinuous; that is data that don’t
overlap in time. For example, if you have data from one type of monitoring
program in one set of years and then data from a different program starting
in some later years, you can still easily estimate the population dynamics
parameters using both sets of data.

There are a number of corners that we cut in order to have an example
that runs quickly for a workshop:

� We ran the code starting from one initial condition. For a real analysis,
you should start from a large number of random initial conditions and
use the one that gives the highest likelihood. Since the EM algorithm is a
“hill-climbing” algorithm, this ensures that it does not get stuck on a local
maxima. PopMARSS will do this for you if you pass it the argument Monte-
CarloInitOptions=list(MCInit=TRUE). This will use a Monte Carlo rou-
tine to try many different initial conditions. See the help file on PopMARSS
for more information (by typing ?PopMARSS at the R prompt).

� We assume independent observation and process errors. Depending on your
system, observation errors may is driven by large-scale environmental fac-
tors (temperature, tides, prey locations) that would cause your observation
errors to covary across regions. If your observation errors strongly covary
between regions and you treat them as independent, this could be bad for
your analysis. The current EM code will not handle covariance in R when
there are missing data, but even it did, separating covariance across obser-
vation versus process errors will require much data (to have any power).
In practice, the first step is to think hard about what drives sightability
for your species and what are the relative levels of process and observation
variance. You may be able to change your data in a way that will make
the observation errors independent–for example, using data from different
months or defining your “regions”

� The PopMARSS argument EMOptions specifies the options for the EM al-
gorithm. We left the default tolerance, EMtol=0.01. You’ll want to set
this lower, e.g. EMtol=0.0001, for a real analysis. You’ll need to up the
max.EMiter argument correspondingly.

� We used the large-sample computation for AIC instead of a bootstrap
AIC that is designed to correct for small sample size in state-space mod-
els. The bootstrap metric, AICb, takes a long time to run (use the call
MARSSaic(kem, output=c("AICb")) to compute AICb. We could have
shown AICc, which is the small-sample size corrector for non-state-space
models. Type kem$AICc to get that.

62 8 Combining multi-site and subpopulation data

Finally, in a real (maximum-likelihood) analysis, one needs to be careful
not to dredge the data. The temptation is to look at the data and pick a
population structure that will fit that data. This can lead to including models
in your analysis that have no biological basis. In practice, we spend a lot of
time discussing the population structure with biologists working on the species
and review all the biological data that might tell us what are reasonable
structures. From that, a set of model structures to use are selected. Other
times, a particular model structure needs to be used because the population
structure is not in question rather it is a matter of using that pre-specified
structure and using all the data to get parameter estimates for forecasting
(U , Q, R). Finally, other times, one wants to have a measure of the support
that the observed data give to all possible different population structures.
That is a Bayesian question (P (Θ|data)) and we would fit a model where Q
is unconstrained and look at the posterior distribution of the elements in Q.

8.6 Discussion 63

Results table

pop. growth process K log-like
Ex. rate variance kem$ kem$num. AIC

kemparU kemparQ params logLik kem$AIC
1 one population

different obs. vars
uncorrelated

2 one population
identical obs vars

uncorrelated
3 N+S subpops

identical obs vars
uncorrelated;

4 5 subpops
unique obs vars

u’s + σ2’s identical
5 N+S subpops

unique obs vars
u’s + σ2’s identical

6 PS + HC subpops
unique obs vars
u’s + σ2’s unique

7 N + S + HC subpops
unique obs vars
u’s + σ2’s unique

For AIC, only the relative differences matter. A difference of 10 between
two AIC means substantially more support for the model with lower AIC. A
difference of 30 or 40 between two AICs is very large.

Questions

1. Do different assumptions about whether the measurement error vari-
ances are all identical versus different affect your estimate of the trend?
You may want to rerun cases 3-7 with the R.constraint changed.
R.constraint="diagonal and unequal" means measurement variances
all different versus "diagonal and equal".

2. Do assumptions about the underlying structure of the population affect
your estimates of trend? Structure here means number of subpopulations
and which areas are in which subpopulation. Try changing ‘state param-
eters differ’ to ‘state params identical’ for examples 5-7.

64 8 Combining multi-site and subpopulation data

3. The CIs for the first two analyses are very tight because the estimate
process variance was very small, kem1parQ. Why do you think σ2 was
forced to be so small? [Hint: We are forcing there to be 1 and only 1 true
process and all the observation time series have to fit that one time series.
Look at the AICs too.]

9

Case Study 3: Using MARSS models to
identify spatial population structure and
covariance

9.1 The problem

In this case study, we use time series of observations from 9 sites along the
west coast to examine large-scale spatial structure in harbor seals (Jeffries
et al., 2003). Harbor seals are distributed along the west coast of the US
from California to Washington. The populations in Oregon and Washington
have been surveyed for > 25 years at a number of haul-out sites (Figure 9.1).
In general, these populations have been increasing steadily since the 1972
(Marine Mammal Protection Act). It remains unknown whether they are at
carrying capacity.

For management purposes, 2 stocks are recognized; the coastal stock con-
sists of 4 sites (Northern/Southern Oregon, Coastal Estuaries, Olympic Penin-
sula), and the inland WA stock consists of the remaining 5 sites (Figure 9.1).
Subtle differences exist in the demographics across sites (e.g. pupping dates),
however mtDNA analyses and tagging studies have suggested that these sites
may be structured on a much larger scale. Harbor seals are known for strong
site fidelity, but at the same time travel large distances to forage.

Our goal for this case study is to address the following questions about
spatial structure: 1) Does population abundance data support the existing
management boundaries, or are there alternative groupings that receive more
support? and 2) Does the Hood Canal site represent a distinct subpopulation?
Type show.doc(MARSS, Case_study_3.R) to open a file in R with all R code
to get you started on the analyses in this chapter.

9.2 Analysis for question 1: how many distinct
subpopulations?

For this analysis, we will analyze the support for five hypotheses about the
population structure. These do not represent all possible structures but in-

66 9 Using MARSS models to identify spatial population structure and covariance
Figure 01. Map of spatial distribution of 9 harbor seal sites in Washington and Oregon.

Southern Coast

Northern Coast

Coastal Estuaries

Olympic
Peninsula

Juan de Fuca
San Juans

H ood Canal

Puget Sound

Eastern Bays

Fig. 9.1. Map of spatial distribution of 9 harbor seal sites in Washington and
Oregon.

stead represent those that are considered most biologically plausible given the
geography and the behavior of harbor seals.

Hypothesis 1 Sites are grouped by stock (m = 2), unique process variances
Hypothesis 2 Sites are grouped by stock (m = 2), same process variance
Hypothesis 3 Sites are grouped by state (m = 2), unique process variances
Hypothesis 4 Sites are grouped by state (m = 2), same process variance
Hypothesis 5 All sites are part of the same panmictic population (m = 1)

Aerial survey methodology has been relatively constant across time and
space, and we will assume that all sites have the same constant (and indepen-
dent) observation error variance for all sites.

9.2 Analysis for question 1: how many distinct subpopulations? 67

9.2.1 Specify the design, Z, matrices

Write down the Z matrices for the hypotheses. Hint: Hypothesis 1 and 2
have the same Z matrix, Hypothesis 3 and 4 have the same Z matrix and
Hypothesis 5 is a column of 1s.

H 1 and 2 H 3 and 4 H 5
Z Z Z

subpop subpop subpop subpop subpop
1 2 1 2 1

Coastal Estuaries
Olympic Peninsula
Str. Juan de Fuca
San Juan Islands

Eastern Bays
Puget Sound
Hood Canal

OR North Coast
OR South Coast

Next you need to specify the constraints argument so that PopMARSS knows
the structure of your Z’s. The Z constraint will be a vector of factors, i.e. it
will have the form as.factor(c(....)).

� Hypothesis 1 and 2: Z.constraint=
� Hypothesis 3 and 4: Z.constraint=
� Hypothesis 5: Z.constraint=

9.2.2 Specify the grouping arguments

For this case study, we will assume that subpopulations share the same growth
rate. What should U.constraint be for each hypothesis? To specify shared u
parameters (for Xi), U.constraint is set as a length m vector of factors and
specifies which subpopulations share their u parameter. Written in R it takes
the form as.factor(c(#,#,...))

� Hypothesis 1-4: U.constraint=
� Hypothesis 5: U.constraint=

What about Q.constraint? To specify a diagonal Q matrix with shared
values along the diagonal, Q.constraint is set as a length m vector of factors.
The vector specifies which Xi’s share their process variance parameter. Look
at each hypothesis (above) and write down the corresponding Q.constraint.

� Hypothesis 1: Q.constraint=

68 9 Using MARSS models to identify spatial population structure and covariance

� Hypothesis 2: Q.constraint=
� Hypothesis 3: Q.constraint=
� Hypothesis 4: Q.constraint=
� Hypothesis 5: Q.constraint=

Lastly, specify R.constraint. As we mentioned above, we will assume that
the observation errors are independent and the observation variance is the
same across sites. You can specify this constraint either as a text string or as
a n length vector of factors.

� Hypothesis 1-5: R.constraint=

9.2.3 Fit models and summarize results

Fit each model for each hypothesis to the seal data (look at the script
Case_Study_3.r for the code to load the data). Each call to PopMARSS will
look like kem = PopMARSS(sealData, constraint=list(Z = Z.constraint,

Q = Q.constraint, R = R.constraint, U = U.constraint)) Fill in the

following table, by fitting the five state-space models – that you have de-
fined for the five hypotheses – to the harbor seal data (using PopMARSS). Use
the Case_Study_3.r script so you don’t have to type in all the commands.

pop. growth process obs. K log-
H rate variance variance kem$num. like. AIC

kemparU kemparQ kemparR params kem$logLik kem$AIC

1

2

3

4

5

9.3 Analysis for question 2: Is Hood Canal separate? 69

9.2.4 Interpret results for question 1

What do these results indicate about the process error grouping, and spatial
grouping? A lower AIC means a more parsimonious model (highest likelihood
given the number of parameters). A difference of 10 between AICs is large, and
means the model with the higher AIC is unsupported relative to the model
with lower AIC.

Extra analysis (if you have time): Do your results change if you assume
that observation errors are independent but have unique variances? The 9
sites have different numbers of haul-outs and so the observation variances
might be different. Repeat the analysis with unique observation variances for
each site (this means changing R.constraint). You can also try the analysis
with temporally co-varying subpopulations (good and bad years correlated) by
setting Q.constraint="unconstrained" or Q.constraint="equalvarcov".

9.3 Analysis for question 2: Is Hood Canal separate?

The Hood Canal site may represent a distinct population, and has recently
been subjected to a number of catastrophic events (hypoxic events, possibly
leading to reduced prey availability, and several killer whale predation events,
removing up to 50% of animals per occurrence). Build four models, assuming
that each site (other than Hood Canal) is assigned to its current management
stock, but Hood Canal is allowed to be a different subpopulation (m = 3).
Again, assume observation error is independent and constant across sites.

Hypothesis 1 Subpopulations have the same process variance and growth rate
Hypothesis 2 Each subpopulation has a unique process variance and growth

rate
Hypothesis 3 Hood Canal has the same process variance, but different growth

rate
Hypothesis 4 Hood Canal has unique process variance and unique growth rate

9.3.1 Specify the Z matrix and Z.constraint

The Z matrix for each hypothesis is the same. The coastal subpopulation
consists of 4 sites (Northern/Southern Oregon, Coastal Estuaries, Olympic
Peninsula), the Hood Canal subpopulation is the Hood Canal site, and the
inland WA subpopulation consists of the remaining 4 sites. Thus m = 3 and
Z is a 9× 3 matrix:

70 9 Using MARSS models to identify spatial population structure and covariance

subpop subpop subpop
1 2 3

Coastal Estuaries
Olympic Peninsula
Str. Juan de Fuca
San Juan Islands

Eastern Bays
Puget Sound
Hood Canal

OR North Coast
OR South Coast

Then write down Z.constraint for this Z.

9.3.2 Specify which parameters are shared across which
subpopulations

U.groups specifies which u are shared across subpopulations. Look at the
hypothesis descriptions above which will specify whether subpopulations share
their population growth rate or have unique population growth rates.

� Hypothesis 1: U.constraint=
� Hypothesis 2: U.constraint=
� Hypothesis 3: U.constraint=
� Hypothesis 4: U.constraint=

U.constraint will be a length m vector of factors. Once you have more than 2
subpopulations, it can get hard to keep straight which U.constraint= number
goes to which subpopulation. It is best to sketch your Z matrix (which tells you
which site in the rows corresponds to which subpopulation in the columns).
Then remember that the elements of U.constraint correspond 1 to 1 with
the columns of Z:

U.constraint=as.factor(c(col 1 Z, col 2 Z, col 3 Z, ..)).
Specify Q.groups showing which subpopulations share their process vari-

ance parameter.

� Hypothesis 1: Q.constraint=
� Hypothesis 2: Q.constraint=
� Hypothesis 3: Q.constraint=
� Hypothesis 4: Q.constraint=

Q.constraint will be a length m vector of factors. R.constraint is the same
as for Question 1; the observation variances are the same for each site.

9.3 Analysis for question 2: Is Hood Canal separate? 71

9.3.3 Fit the models and summarize results

Fit each model for each hypothesis to the seal data (look at the script
Case_Study_3.r for the code to load the data). Each call to PopMARSS will
look like

kem = PopMARSS(sealData, constraint=list(Z = Z.constraint, Q =
Q.constraint, R = R.constraint, U = U.constraint))

pop. growth K log-like
H rate proc. variance obs. variance kem$num. kem$ AIC

kemparU kemparQ kemparR params logLik kem$AIC

1

2

3

4

9.3.4 Interpret results for question 2

How do the residuals for the Hood Canal site compare from these models
relative to the best model from Question 1? Hint: If you have the vector of
estimated population states (Xpred = t(kem$states)) and the data (Xobs =
sealData), the residuals for site i can be plotted in R as:

Xpred = t(kem$states)

Xobs = sealData

plot(Xpred[, Z.constraint[i]] - Xobs[,i],

ylab="Predicted-Observed Data")

In R, if you have a matrix Y[1:numYrs, 1:n], you can extract column j by
writing Yj = Y[,j].

Relative to the previous models from Question 1, do these scenarios have
better or worse AIC scores (smaller AIC is better)? If you were to provide
advice to managers, would you recommend that the Hood Canal population is
a source or sink? What implications does this have for population persistence?

72 9 Using MARSS models to identify spatial population structure and covariance

Code for Case Study 3
Type show.doc(MARSS, Case_study_3.R) to open a file in R with all the
example code.

10

Case Study 5: Using state-space models to
analyze noisy animal tracking data

10.1 A simple random walk model of animal movement

A simple random walk model of movement with drift but no correlation is

x1,t = x1,t−1 + u1 + e1,t, e1,t ∼ Normal(0, σ2
1) (10.1)

x2,t = x2,t−1 + u2 + e2,t, e2,t ∼ Normal(0, σ2
2)

where x1,t is the location at time t along one axis (in our case study, longitude)
and x2,t is for another, generally orthogonal, axis (in our case study, latitude).
We add errors to our observations of location:

y1,t = x1,t + a1 + ε1,t, ε1,t ∼ Normal(0, η2
1) (10.2)

y2,t = x2,t + a2 + ε2,t, ε2,t ∼ Normal(0, η2
2),

Together Equations 10.2 and 10.3 describe a MARSS model (now written
in matrix form):

Xt = Xt−1 + U + Et, Et ∼MVN(0,Q) (10.3)
Yt = Xt + A + ηt, ηt ∼MVN(0,R). (10.4)

10.2 The problem

Loggerhead sea turtles (Caretta caretta) are listed as threatened under the
United States Endangered Species Act of 1973. Over the last ten years, a
number of state and local agencies have been deploying ARGOS tags on log-
gerhead turtles on the east coast of the United States. We have data on eight
individuals over that period. In this case study, we use some turtle data from
the WhaleNet Archive of STOP Data, however we have corrupted this data
severely by adding random errors in order to create a “Bad Tag” problem. We
corrupted latitude and longitude data by errors (Figure 10.1) and it would

74 10 Analyzing animal tracking data

appear that our sea turtles are becoming land turtles (at least part of the
time).

For this case study, we will use PopMARSS to estimate true positions and
speeds from the corrupted data. We will use a mapping package to plot the
results: the maps package. If you have not already, install this package by
selecting the ‘Packages’ menu and then ‘Install packages’ and then select maps.
If you are on a Mac, remember to select “binaries” for the package type. Type
show.doc(MARSS, Case_study_5.R) to open a file in R with all R code to
get you started on the analyses in this chapter.

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
● ● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●●

●
●●●●

●
●

●

●

●

Fig. 10.1. Plot of the tag data from the turtle Big Mama. Errors in the location
data make it seem that Big Mama has been moving overland.

10.3 Using the Kalman-EM algorithm to estimate locations from bad tag data 75

10.3 Using the Kalman-EM algorithm to estimate
locations from bad tag data

10.3.1 Read in the data and load maps package

Our noisy data are in loggerheadNoisy. They consist of daily readings of
location (longitude/latitude). The data are recorded daily and PopMARSS re-
quires an data entry for each day. If data are missing for a day, then the entries
for lat and lon for that day should be -99. However, to make this case study run
quickly, we have interpolated all missing values in the original, uncorrupted,
dataset (loggerhead). The corrupted data look like so

loggerheadNoisy[1:6,]

turtle month day year lon lat
1 BigMama 5 28 2001 -81.45989 31.70337
2 BigMama 5 29 2001 -80.88292 32.18865
3 BigMama 5 30 2001 -81.27393 31.67568
4 BigMama 5 31 2001 -81.59317 31.83092
5 BigMama 6 1 2001 -81.35969 32.12685
6 BigMama 6 2 2001 -81.15644 31.89568

and the file has data for 8 turtles:

levels(loggerheadNoisy$turtle)

[1] "BigMama" "Bruiser" "Humpty" "Isabelle" "Johanna"
[6] "MaryLee" "TBA" "Yoto"

We will first analyze the position data for “Big Mama”. We put the data for
“Big Mama” into variable dat. dat is transposed because we need time across
the columns.

turtlename="BigMama"

dat = loggerheadNoisy[which(loggerheadNoisy$turtle==turtlename),5:6]

dat = t(dat) #transpose

10.3.2 Use PopMARSS to estimate the position of Big Mama

We will begin by specifying the structure of the MARSS model and then use
PopMARSS to fit that model to the data for each individual. There are two
state processes (one for latitude and the other for longitude). There is one
observation time series for each so

Z.constraint=as.factor(c(1,2))

We’ll assume that the errors are independent and that there are different drift
rates (U), process variances (Q) and measurement variances for latitude and
longitude (R). You can try model constraints if you wish.

76 10 Analyzing animal tracking data

U.constraint="unequal"

Q.constraint="diagonal and unequal"

R.constraint="diagonal and unequal"

Fit the model to the data:

kem = PopMARSS(dat, constraint=list(Z = Z.constraint,

Q = Q.constraint, R = R.constraint, U = U.constraint))

10.3.3 Compare state estimates to the real positions

The real locations (from which loggerheadNoisy was produced by adding
noise) are in loggerhead. In Figure 10.2, we compare the tracks estimated
from the noisy data with the original, good, data (see the R script, Case_Study_5.r
for the code to make this plot. There are only a few data points for the real
data because the real tag data has many missing days.

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●
●●●●

●
●

●

●

●

● bad locations
estimated true location
good location data

Fig. 10.2. Plot of the estimated track of the turtle Big Mama versus the good
location data (before we corrupted it with noise).

10.3 Using the Kalman-EM algorithm to estimate locations from bad tag data 77

10.3.4 Estimate speeds for each turtle

Turtle biologists designated one of these loggerheads“Big Mama,”presumably
for her size and speed. For each of the eight turtles, estimate the average miles
traveled per day. To calculate the distance traveled by a turtle each day, you
use the estimate (from PopMARSS) of the lat/lon location of turtle at day t
and at day t−1. To calculate distance traveled in miles from lat/lon start and
finish locations, we will use the function GCDF defined at the beginning of the
R script, Case_Study_5.r):

distance[i-1]=GCDF(pred.lon[i-1],pred.lon[i],

pred.lat[i-1],pred.lat[i])

pred.lon and pred.lat are the predicted longitudes and latitudes from Pop-
MARSS. To calculate the distances for all days, we put this through a for
loop:

distance = array(-99, dim=c(dim(dat)[2]-1,1))

for(i in 2:dim(dat)[2])

distance[i-1]=GCDF(pred.lon[i-1],pred.lon[i],pred.lat[i-1],pred.lat[i])

The command (mean(distance) gives us the average distance per day.
We can also make a histogram of the distances traveled per day (Figure 10.3).
Repeat the analysis done for “Big Mama” for each of the other turtles and fill

out the speed table (Table 10.3.4). If you were given the opportunity to race
these turtles, would you bet on Big Mama being the fastest?

Turtle Estimated Speed

Big Mama

Bruiser

Humpty

Isabelle

Johanna

Mary Lee

TBA

Yoto

78 10 Analyzing animal tracking data

Histogram of distance

distance

F
re

qu
en

cy

0 10 20 30 40 50

0
5

10
15

Fig. 10.3. Histogram of the miles traveled per day for Big Mama. Compare this
to the estimate of miles traveled per day if you had not accounted for measurement
errors. See the script file, Case_Study_5.r, for the code to this.

10.4 Comparing turtle tracks to proposed fishing areas

One of the greatest threats to the long term viability of loggerhead turtles is
incidental take by net/pot fisheries. Add two proposed fishing areas to your
turtle plots:

the proposed fishery areas

lines(c(-77,-78,-78,-77,-77),

c(33.5,33.5,32.5,32.5,33.5),col="red",lwd=2)

lines(c(-75,-76,-76,-75,-75),

c(38,38,37,37,38),col="red",lwd=2)

Given that only one area can be chosen as a future fishery, what do your
predicted movement trajectories for our eight turtles tell you?

10.6 Using specialized packages to analyze tag data 79

10.5 Using fields to get density plots of locations

If you are comfortable programming in R, load the fields package. Make 3D
density plots of predicted sea turtle locations. Which two areas appear to be
most visited?

Include the confidence interval estimates for each location in this analysis.
For this part of the exercise, we will assume that the confidence intervals
are roughly the same as the probability intervals (Bayesian). We can assume
that the error in latitude is independent from error in longitude. The fields
package includes a couple different functions. One that might be useful here
is Tps(), like in the example (?fields). To call fields, we need predictor
variables (X), which can be random lon/lat pairs randomly drawn within the
range of the data. The other requirement for Tps() is the response, y. If we
think of each predicted state being a bivariate normal density, the response
for each of our random pairs can be the density across all of the predicted
states. There is code to help you get started in the R file, Case_Study_5.r.

10.6 Using specialized packages to analyze tag data

If you have real tag data to analyze, you should use a state-space modeling
package that is customized for fitting MARSS models to that kind of data.
The MARSS package does not have all the bells and whistles that you would
want for analyzing tracking data, particularly tracking data in the marine
environment. These are a couple R packages that we have come across for
this purpose:

UKFSST http://www.soest.hawaii.edu/tag-data/tracking/ukfsst/
KFTRACK http://www.soest.hawaii.edu/tag-data/tracking/kftrack/

kftrack is a full-featured toolbox for analyzing tag data with extended
Kalman filtering. It incorporates a number of extensions that are important
for analyzing track data: barriers to movement such as coastlines and non-
Gaussian movement distributions. With kftrack, you can use the real tag
data which has big gaps, i.e. days with no location. PopMARSS will struggle
with these data because it will estimate states for all the unseen days; kftrack
only fits to the seen days.

To use kftrack to fit the turtle data, type

library(kftrack) # must be installed from a local zip file

loggerhead = loggerhead

Run kftrack with the first turtle (BigMama)

turtlename = "BigMama"

model = kftrack(loggerhead[which(loggerhead$turtle == turtlename), 2:6],

fix.first=F, fix.last=F, var.struct="uniform")

To look at what the kftrack model consists of, type

80 10 Analyzing animal tracking data

model

Code for Case Study 5
Type show.doc(MARSS, Case_study_5.R) to open a file in R with the exam-
ple code.

A

Package MARSS: Object structures

A.1 Model objects: class ‘marssm’

Objects of class ‘marssm’ specify Multivariate Autoregressive State Space
(MARSS) models. The model component of an ML estimation object (class
‘marssMLE’; see below) is an ‘marssm’ object. These objects have the follow-
ing components:

data An optional matrix (not dataframe), in which each row is a time series
(time across columns).

fixed A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying which
elements of each parameter are fixed.

free A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying which elements
of each parameter are to be estimated.

M An array of dim n x n x t (an n x n missing values matrix for each time
point). Each matrix is diagonal with 0 at the i,i value if the i-th value of
y is missing, and 1 otherwise.

miss.value Specifies missing value representation in the data.

The matrices in fixed and free work as pairs to specify the fixed and
free elements for each parameter. See section 3. The dimensions for fixed
and free matrices are as follows, where n is the number of sites and m is the
number of subpopulations (state processes):

Z n x m
B m x m
U m x 1
Q m x m
A n x 1
R n x n
x0 m x 1
V0 m x m

82 A Package MARSS: Object structures

Use is.marssm() to check whether an ‘marssm’ object is correctly speci-
fied. TheMARSS package includes an as.marssm() method for wrapper objects
of class ‘popWrap’ (see next section). We recommend that creators of new
wrapper classes write new as.marssm() methods for their classes.

A.2 Wrapper objects: class ‘popWrap’

Wrapper objects of class ‘popWrap’ contain specifications and options for esti-
mation of a MARSS model. A ‘popWrap’ object has the following components:

data A matrix (not dataframe), sites (rows) x time (columns), of observed
population abundances. If the algorithm is to be applied to log-abundance,
the log transformation should be done before the data is passed in.

m Number of subpopulations (state processes).
constraint Either a list with 8 string elements Z, A, R, B, U, Q, x0, V0 (see

below for details), or string ‘ignore’.
fixed If constraint = 'ignore', a list with 8 matrices Z, A, R, B, U, Q,

x0, V0.
free If constraint = 'ignore', a list with 8 matrices Z, A, R, B, U, Q, x0,

V0.
inits A list with 7 matrices A, R, B, U, Q, x0, V0, specifying initial values

for parameters. Dimensions are given in the class ‘marssm’ section.
miss.value Specifies missing value representation.
EMOptions List of estimation options for the EM algorithm, containing ele-

ments max.EMiter, EMtol, iter.V0 and debugEM. See class ‘marssMLE’
section for details.

MonteCarloInitOptions List of options for Monte Carlo initialization, con-
taining elements MCInit, numInits, numInitSteps and bounds. See
class ‘marssMLE’ section for details.

Component constraint is a convenient way to specify model structure
for certain common cases. If constraint = 'ignore', both fixed and free
must be provided. See the class ‘marssm’ section for how to specify fixed and
free matrices. The wrapper function PopMARSS() calls popWrap() to create a
‘popWrap’ object, then is.marssm() to coerce this object to class ‘marssm’
for the estimation function.

The popWrap() function calls checkPopWrap() to check user inputs. Valid
constraints are as follows; see section 4 for details. (The V0 constraint depends
on the x0 constraint.)

A Must be string ‘scaling’.
B String ‘fixed’, ‘identity’, ‘unconstrained’, ‘diagonal and unequal’, or ‘di-

agonal and equal’. May also be vector of class factor specifying shared
diagonal values.

A.3 ML estimation objects: class ‘marssMLE’ 83

Q String ‘fixed’, ‘unconstrained’, ‘diagonal and unequal’, ‘diagonal and equal’,
or ‘equalvarcov’. May also be vector of class factor specifying shared di-
agonal values.

R String ‘fixed’, ‘unconstrained’, ‘diagonal and unequal’, ‘diagonal and equal’,
or ‘equalvarcov’. May also be numeric vector of class factor specifying
diagonal valuess.

U String ‘fixed’, ‘unconstrained’=‘unequal’, or ‘equal’. May also be vector of
class factor specifying shared growth rates.

x0 String ‘fixed’, ‘unconstrained’=‘unequal’, or ‘equal’. May also be vector of
class factor specifying shared initial conditions.

Z String ‘fixed’ or a vector of class factor specifying which Y time series
correspond to which state time series (the Xs).

A.3 ML estimation objects: class ‘marssMLE’

Objects of class ‘marssMLE’ specify maximum likelihood estimation of a
MARSS model. A minimal ‘marssMLE’ object contains components model, start
and control, which must be present for estimation by functions like MARSSkem().

model MARSS model specification (an object of class ‘marssm’).
start List with 7 matrices A, R, B, U, Q, x0, V0, specifying initial values for

parameters. Dimensions are given in the class ‘marssm’ section.
control A list specifying estimation options.

max.EMiter Maximum number of EM iterations.
EMtol Optional tolerance for log-likelihood change. If log-likelihood de-

creases less than this amount relative to the previous iteration, the
EM algorithm exits.

iter.V0 Maximum number of iterations for final likelihood calculation
with V0 = 0.

debugEM If TRUE, a record will be created of each variable over all EM
iterations.

MCInit Use Monte Carlo initialization?
numInits Number of random initial value draws.
numInitSteps Number of iterations for each initial value draw.
bounds Bounds on the uniform distributions from which initial values will

be drawn. (Note that bounds for the covariance matrices Q and R,
which require positive values, are specified in logs.)

silent Suppresses printing of progress bar and convergence information.

MARSSkem() appends the following components to the ‘marssMLE’ object:

method A string specifying the estimation method (‘kem’ for estimation by
MARSSkem()).

par A list with 8 matrices of estimated parameter values Z, A, R, B, U, Q,
x0, V0.

84 A Package MARSS: Object structures

kf A list containing Kalman filter/smoother output. See section 5.1.
numIter Number of iterations required for convergence.
convergence Convergence status.
logLik Log-likelihood.

Several functions append additional components to the ‘marssMLE’ object
passed in. These include:

MARSSaic Appends AIC, AICc, AICbb, AICbp and/or AICi, depending on
the AIC flavors requested.

MARSShessian Appends Hessian, gradient, parMean and parSigma.
MARSSparamCIs Appends par.se, par.upCI and par.lowCI.

B

Package MARSS: Base functions and wrappers

Package MARSS includes functions for estimating Multivariate Autoregres-
sive State Space models, obtaining confidence intervals for parameters, and
calculating Akaike’s Information Criterion (AIC) for model selection. To make
the package both flexible and easy to use, it is designed in two levels. At the
base level, the programmer can interact directly with the estimation func-
tions, using two kinds of R objects: objects of the model specification class
‘marssm’, and objects of estimation classes such as ‘marssMLE’. At the user
level, wrapper functions allow model estimation with just one function call,
hiding the details for ease of use. Users create models in an intuitive way by
specifying constraints; the wrapper functions then convert these constraints
into the object structures required by the estimation functions, performing
error checking as necessary.

The two-level package structure allows new users convenient access to the
underlying functions, while maintaining flexibility to incorporate different ap-
plications and algorithms. Developers can use the base object types to write
new wrappers for their own modeling applications.

The MARSS package provides the wrapper function PopMARSS(), which
was developed specifically for use in ecological applications including:

� Modeling the structure of population dynamics of a single species measured
at multiple sites.

� Modeling community interactions of several different species.

To use the wrapper, the user specifies a model by supplying the constraint
argument to PopMARSS(), using the method argument to specify an estimation
method. Optionally, the user may provide initial values for the free parame-
ters, and specify estimation options; for details see the PopMARSS() help file.
The function returns an object containing the model, parameter values and
estimation details. The user may pass the returned object to MARSSboot(),
which generates bootstrap parameter estimates, or to MARSSaic(), which cal-
culates various versions of AIC for model selection.

86 B Package MARSS: Base functions and wrappers

Figure 1 shows the underlying base level operations PopMARSS()performs.
The function creates a wrapper object of class ‘popWrap’. It then calls the
as.marssm() method for ‘popWrap’ to create a marssm model specification
object from the constraints provided. This model object, initial values and
control information are the minimal information required by the estimation
functions, and are combined into an object of class appropriate for the esti-
mation method. The estimation function adds to this object the estimated
parameter values, estimation details, and other function-specific components,
and then returns the augmented object.

Fig. B.1. Two-level structure of the MARSS package. Rectangles represent func-
tions; ovals represent objects.

References

Biernacki, C., Celeux, G., and Govaert, G. 2003. Choosing starting
values for the EM algorithm for getting the highest likelihood in multivari-
ate gaussian mixture models. Computational Statistics and Data Analysis
41:561–575.

Brockwell, P. J. and Davis, R. A. 1991. Time series: theory and methods.
Springer-Verlag, New York, NY.

Cavanaugh, J. and Shumway, R. 1997. A bootstrap variant of AIC for
state-space model selection. Statistica Sinica 7:473–496.

Dempster, A., Laird, N., and Rubin, D. 1977. Likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series
B 39:1–38.

Dennis, B., Munholland, P. L., and Scott, J. M. 1991. Estimation
of growth and extinction parameters for endangered species. Ecological
Monographs 61:115–143.

Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L., and Staples,
D. F. 2006. Estimating density dependence, process noise, and observation
error. Ecological Monographs 76:323–341.

Ellner, S. P. and Holmes, E. E. 2008. Resolving the debate on when
extinction risk is predictable. Ecology Letters 11:E1–E5.

Gerber, L. R., Master, D. P. D., and Kareiva, P. M. 1999. Grey
whales and the value of monitoring data in implementing the u.s. endan-
gered species act. Conservation Biology 13:1215–1219.

Ghahramani, Z. and Hinton, G. E. 1996. Parameter estimation for
linear dynamical systems. Technical Report CRG-TR-96-2, University of
Totronto, Dept. of Computer Science.

Harvey, A. C. 1989. Forecasting, structural time series models and the
Kalman filter. Cambridge University Press, Cambridge, UK.

Harvey, A. C. and Shephard, N. 1993. Structural time series models. In
G. S. Maddala, C. R. Rao, and H. D. Vinod (eds.), Handbook of Statistics,
Volume 11. Elsevier Science Publishers B V, Amsterdam.

88 References

Hinrichsen, R. 2009. Population viability analysis for several populations
using multivariate state-space models. Ecological Modelling 220:1197–1202.

Hinrichsen, R. and Holmes, E. E. 2009. Using multivariate state-space
models to study spatial structure and dynamics. In R. S. Cantrell, C.
Cosner, and S. Ruan (eds.), Spatial Ecology. CRC/Chapman Hall.

Holmes, E. E. 2001. Estimating risks in declining populations with poor
data. Proceedings of the National Academy of Sciences of the United States
of America 98:5072–5077.

Holmes, E. E. 2004. Beyond theory to application and evaluation: diffusion
approximations for population viability analysis. Ecological Applications
14:1272–1293.

Holmes, E. E. 2010. Derivation of the EM algorithm for constrained and
unconstrained marss models. Technical report, Northwest Fisheries Science
Center, Mathematical Biology Program.

Holmes, E. E., Sabo, J. L., Viscido, S. V., and Fagan, W. F. 2007.
A statistical approach to quasi-extinction forecasting. Ecology Letters
10:1182–1198.

Holmes, E. E. and Ward, E. W. 2010. Analyzing noisy, gappy, and mul-
tivariate population abundance data: modeling, estimation, and model se-
lection in a maximum-likelihood framework. Technical report, Northwest
Fisheries Science Center, Mathematical Biology Program.

Jeffries, S., Huber, H., Calambokidis, J., and Laake, J. 2003. Trends
and status of harbor seals in washington state 1978-1999. Journal of Wildlife
Management 67:208–219.

Kalman, R. E. 1960. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering 82:35–45.

McLachlan, G. J. and Krishnan, T. 2008. The EM algorithm and ex-
tensions. John Wiley and Sons, Inc., Hoboken, NJ, 2nd edition.

Rauch, H. E., Tung, F., and Striebel, C. T. 1965. Maximum likelihood
estimation of linear dynamical systems. Journal of AIAA 3:1445–1450.

Schweppe, F. C. 1965. Evaluation of likelihood functions for Gaussian sig-
nals. IEEE Transactions on Information Theory IT-r:294–305.

Shumway, R. and Stoffer, D. 2006. Time series analysis and its applica-
tions. Springer-Science+Business Media, LLC, New York, New York, 2nd
edition.

Shumway, R. H. and Stoffer, D. S. 1982. An approach to time series
smoothing and forecasting using the EM algorithm. Journal of Time Series
Analysis 3:253–264.

Staples, D. F., Taper, M. L., and Dennis, B. 2004. Estimating popula-
tion trend and process variation for PVA in the presence of sampling error.
Ecology 85:923–929.

Stoffer, D. S. and Wall, K. D. 1991. Bootstrapping state-space models:
Gaussian maximum likelihood estimation and the Kalman filter. Journal
of the American Statistical Association 86:1024–1033.

References 89

Taper, M. L. and Dennis, B. 1994. Density dependence in time series ob-
servations of natural populations: estimation and testing. Ecological Mono-
graphs 64:205–224.

Ward, E. J., Chirakkal, H., González-Suárez, M., Aurioles-
Gamboa, D., Holmes, E. E., and Gerber, L. 2009. Inferring spatial
structure from time-series data: using multivariate state-space models to
detect metapopulation structure of California sea lions in the Gulf of Cali-
fornia, Mexico. Journal of Applied Ecology 1:47–56.

Index

animal tracking, 73
kftrack, 79

bootstrap
innovations, 4, 20, 21
MARSSboot function, 4
parametric, 4, 20, 21

confidence intervals, 43
Hessian approximation, 4, 43
MARSSparamCIs function, 4
non-parametric bootstrap, 4
parametric bootstrap, 4, 43

density-independent, 25
diagnostics, 53

error
observation, 26
process, 25, 26

estimation, 28
Dennis method, 29
Kalman filter, 3, 17
Kalman smoother, 3, 17
KalmanEM, 3, 19, 28
maximum-likelihood, 28, 29
REML, 44

extinction, 25
diffusion approximation, 34
uncertainty, 39

functions
is.marssm, 4
is.marssMLE, 4
MARSSaic, 4, 21

MARSSboot, 4, 21
MARSShessian, 4
MARSSkem, 19
MARSSkem (EM algorithm), 3
MARSSkf, 17, 18
MARSSkf (Kalman filter), 3
MARSSmcinit, 4, 20
MARSSparamCIs, 4, 21
MARSSsimulate, 4, 21
MARSSvectorizeparams, 4
PopMARSS, 3, 9

likelihood, 3, 18
innovations algorithm, 18
missing value modifications, 18

MARSS model, 1
multivariate example, 45, 65, 73
univariate example, 25

model selection, 21
AIC, 21
AICb, 21
MARSSaic function, 4

model specification
in marssm objects, 6
in PopMARSS, 10

objects
marssm, 3, 81
marssMLE, 3, 83
popWrap, 82

simulation, 21
MARSSsimulate function, 4

standard errors, 4

